AD-A100 814 AIR FORCE INST OF TECH WRIGHT=PATTERSON AFB OH SCHOO=-ETC F/6 9/2
ASGOL~AN ALGOL~STRUCTURED GRAPHICS ORIENTED LANGUAGE.(U)
MAR 81 J D HART
UNCLASSIFIED AFIT/GCS/MA/81M=2

=
=T
(o
=
z ELECTE
JuL 1 1981
>
o. UNITED STATES AIR FORCE
8 AIR UNIVERSITY D
f | AIR FORCE INSTITUTE OF TECHNOLOGY
[Wright-Patterson Air Force Base,Ohio

| DISTRIBUTION STATEMENT A

Approved for public release; |
Distribution Unlimit'_ed‘_

81 6 30 066

AFIT/GCS/MA/81M=-2

7Acce:.‘.sion For

NTIS GRA&I |
DTIC TAR ™
Unanneuneed 3
Justirlica {en_o ..
Ry e
CPistvitution/

Avata.rliiey

! H
N s
| Sl oot I
Lict SR Lhd i
; ﬁ |
]
R o
ASGOL - AN ALGOL-STRUCTURED
GRAPHICS ORIENTED
LANGUAGE
THES1S
AFIT/GCS/MA/81M-2 . James -Di~Hart
and Lt USAF
i F-_ q-‘r' - /",

ATIT/ACS/A /3]0 1=2

ASOOL = AN ALTSOL=STRUCTTIRED
SRAPHMICS ORITHTE

LANGUAGE

TiTS1S

?rasented to the Facultv of the School 3f "a~ineerinn
of the Air Force Institute of Technologw
Alr "niversity

-

in Partial Tul

fillment of the
equirements for the Nezree of

"faster of Sciznce

by

James Navid llart, ".8.
Ind Lt TSAR
“raduate Comnutar Svystems

Yarch 1981

PREFACE

Since my first encounter with computers over five
years ago, when I designed a simple basic compiler for the
TI-59, 1 have been fascinated with programming languages.
Over the past several years, I have come to believe more
and —ore that programming is more an art form than a
sciznce. This can be seen in the almost unlimited number
of methods that even the simplest of programs can be
implemented. With the introduction of ALGOL and other
imitative block structured languages, programming has
become even more diversified. However, I hold to the
belief that there is one most efficient method for each
givean program application.

I feel it is not necessary to express the frustrations
and anxieties felt when writing a program in a language
that is inadequate to effectively perform a task, when the
results are not as expected and the error messages do not
pinpoint the problems, or when the implementation requires
a complete understanding of how the compiler generates the
object code. I know I am not alone. However, I view these
experiences constructively. It is the inadequacies of the
predecessors, as well as the good features, that should
facilitate the design of new programming languages. The
language designer who does not recognize the faults of

previous languages has not considered the full extent to

i1

—

which his language should apply and is not providing any
benefits to the user over other languages. Language
design, therefore, is a major engineering task, requiring
nct only a familiarity with the object code to be generated
but a deep understanding of all aspects of programming.

The resulting language must efficiently and completely
integrate these two into an effective working system.

Since it 1{s true in some cases that these inadequacies
are relative only to the specific applications of the lang-
uage, they are often not discovered until late in the
design phase or during the implementation phase of the
system. This sometimes requires, as I have discovered, a
complete reevaluation of the language to determine the
affects the changes may have upon the language as a whole.

The majority of the work for this thesis was applied
to the development of the language. The initial request
from the sponsors (AFWAL/ACD) was that the software system
be supported by PLOT=-10, the TEKTRONIX graphics software
package. Through the efforts of my thesis advisor, Major
Wirth, DISSPLA was shown to have more flexibility and versa-
tility and provide better support in its device independ-
ence and plot enhancements than PLOT-10. However, it was
got until the end of the third month of research that the
change to DISSPLA was finally approved. Much of the design,
therefore, that had been structured around PLOT-10 support

had to be recomposed to fit that of DISSPLA.

111

lan~uare <esirn continued carourh £he 2izhc. sarth of this
thesis. This slowed nuch of the software systea desizn devel-
opment.

The syntactic error recovery procedure in this system was
developed independently. Althoush there were many refereaces to
desienine an LR(1l) parser skeleton, none of the raferences give
any hint as to how error recovery could he implemented.

I would like to thank at this time ‘fajor ‘Michael C. Wirth
for his efforts and support in this thesis project for without his
help, this document could not have been completed in time. I would
also like to thank Capt. Roie Black and Professor Charles Richards
for their ideas and contributions to this thesis. 1T would like to
thank Paul 8hahady and Mank “Maas at AFWAL/ACD for their time in
helpinz me with this project.

Tinally, T would like to thank Suzanne Hamel, scon to be
Suzanne Hart, for her devotion and support through the trving times

of this thesis.

iv

CONTENTS

Preface « o« o+ ¢ o ¢ o v ¢ v ¢ o o o &
List of Figures « « « « o o o o ¢ & »
List of Tables «+ o o ¢ ¢ ¢ & o o « &
AbDSETACE o ¢ o ¢ o o o o s o o o o »
I. TIntroduction =« ¢ « o o o o o o o
II. Requirements and Extensions . .
III. Language Design « « « &« ¢ « o &«

IV. System Design « « « o ¢ o o o o o
Main System « ¢ ¢ ¢ o« o .
Scanner Routines + « « o o o«
Parser Routines « « « o« ¢ ¢ &
Semantic Routines . « « « o«
Error Routines « ¢« « & o+ ¢ o
Syntactic Error Recovery . . .
Symbol Tables « « « ¢ ¢ ¢ o &

V. Recommendations For Extension . .
Tree Structured Language . .« .
Block Structures « « « ¢ « o .
Procedures and Functions . . .
Graphics Procedures .+ . + «

Appendix A BNF code « « « ¢ « &+ o &
Appendix B System Commands « « « « .

Appendix C Programming Guide
Beginner’s Guide « « +» « « .+ .
Program Block Structuring

Structure Commands .+ . .

Graphics Instructions . .

Lines and Arrows Instructions

Graph Instruction .
Pie graph . . .

Linear and Bar graph

Text Instruction . .

Program Enhancement
Constants and Variables .
Arithmetic Expressions .
Assignment Instructioms .

Page Format Instructions

Page Margin Default . . .
Graph Instructions . . .

Text Instructions « . . .
String Manipulation .« + . . .

ii

<<
-~

vii

18
19
20
25
27
29
30
33

39
39
50
52
54

57

76

78
78
82
90
93
94
99
106
107
111
117
117
123
133
140
143
143
149
151

FIGURE

WO~ E W —

List of Figures

System Interrelationships
Main System Subroutines . « .« . . &
Scanner Routines .+ « o ¢ o o + o« &
String Stack Allocation « « « . . .
Parser Subroutines =+ . « + o & o &
Semantic Subroutines .+ « + ¢ ¢ .+ .
Possible Look-~ahead States
Example Symbol Table Structure . .
Example Symbol Table Structure . .
Axls Variable Record Structure . .
Instruction Records « « « ¢ & ¢ o &
Instruction Records . « « « o« « & &
Instruction Records « « ¢« o ¢ & o &
Instruction Records « « « ¢ ¢« « o &
Node Records « s o« o « ¢ o o o o &
Node Records « ¢ o ¢ o o o o o o o
Procedure Declaration Example . . .
Program Block Structure « ¢« « + .« &
Page Examples + « ¢ o o o ¢ ¢ o o &
Segment Examples .+ « « o ¢ o & o o
Margin With Parameters «
Margin Without Parameters . « . « .
Margin Error Example . « « & + +
Text and Graph Combination
Line Instruction8 « « ¢« « ¢« ¢ & o« &
Arrow Forms and Locations
Line and Arrow Instructions
Lines and Arrows Example
Linear axes Definition . . « . . .
Bar Axes Definition « ¢« o ¢« &« & . .
Pie Graph Example « « « « ¢« o & &
Pie Graph Example « ¢ ¢« ¢ o o« o o &
Bar and Linear Graph Example . . .
Bar and Linear Graph Example . . .
Text Example « o o « o « ¢ o o o
Text Example =« ¢ o o ¢ &+ o & o o &
Constant and Variable Declarations
Integer Expression Examples
Real Expression Examples . « « .« .
Origin Function Example + . « « « &
Area Function Example « « « « « « &

vi

PAGE

19
20
21
24
26
28
32
34
36
38
44
45
46
47
48
49
54
83
87
89
9l
91
92
94
95
96
97
98
101
102
107
107
109
110
115
116
121
128
129
132
133

List of Tables

TABLE PAGE

DISSPLA Levels o« o o » o o o v o o s b o0 0 0 0 000 . 10
Direct Data Graph Coordinames .« « + » « « = * ° ° ¢ . 108
Precedence of Oparations « « « o o = o ¢ ¢ = = = * ° ¢ 125
Expression Primaries .+ « « o ¢ ¢ ¢ ¢ 0 0 o7 R ¥4
Type Symbols o+ o o » o o o » o = 0t 0 000 e e e e o« 127
Array Variable Assignments .« o ¢ ¢ ¢ ¢ ¢ © * ¢ o oo o« e 137

fo LV, WR SN U S

7 X Coordinates of Array Componments .« « « o ¢ ¢ ¢ ° ° ¢ 146
8 X Coordinates for Stacked Graphs « « « » « « ¢ = * 7 148
9 Shift Character Represaentation . « o « o = o @ @ 7 ¢ . 152
10 Reserved Words and Symbols List .« » » ¢ e e v o @ ¢ 156

!
:

b,

vii

ABSTRACT

Graphical methods for visual data display and analysis have had a
growing popularity over the past ten years due to their interactive
capabilities and the widespread availability of graphic peripheral
equipment inwhich to display the data. However, these tools are often
inhibited by language complexity and device-~dapendence considerations
that the user must make. This thesis provides one alternative to these
dilemmas.

An ALGOL=-structured Graphics Oriented Lanéuage (ASGOL) was designed
to provide a block-structured format to graphics programs, using several

-simple instructions to plot linear, bar, and pie graphs. The system
was developed around the DISSPLA software package, which generates a
device independent file. The DISSPLA post-processing techniques are
then used to produce the graphics output to a number of graphics
peripherals, including TEKTRONIX video screens and CALCOMP plotters.

In addition, the language provides a text processor technique to
draw a variety of character styles and fonts. This text processor can

be used to produce entire reports or to document graphs and charts.

viid

I. TINTRODUCTION

In situations where business-oriented data changes on a daily or
weekly basis, it 1is becoming increasingly important ¢to display
computational analysis of data in <various graphical forms that are
easily readable by managers. It {s not surprising that graphical
output is preferred over other forms of data representation since it
is an established fact that the human mind can comprehend pictorial
information quickly and easily.

The purpose of this thesis was to design a high-level graphics
oriented language and to implement this language with an interpreter
System. The language was designed to give as much flexibility as
possible to the programmer, yet was constrained to have a general
purpose instruction set for generating graphs as well as text.

The types of graph forms provided include 2-dimensional linear
graph plots (linear-linear, log-linear, linear-log, and log-log axes)
with multiple plotting capabilities, bar and stacked bar graphs, and
ple graphs. Legends and grids for linear and bar graphs are also
available. 1In addition, the language was designed with several text
editor instructions for drawing text anywhere within a page plot.
All DISSPLA fonts and styles are available for string manipulation
through the language, with variable character height. Also, the size
and margins of page plots are adjustable.

The interpreter system was designed to execute on the
Aeronautical Systems Division (ASD) Control Data Corporation (CDC)
computer, using the Display Integrated Software System and Plotting

Language (DISSPLA) package for graphics generation. All plots are

e e T T T X S T I L Bk G o

57721 in an intermediate device independent file. This file may
then be wused to display the graphics output through the use of a
post=-processor to any of a number of devices, including the TEKTRONIX
4010 and 4014 graphics terminals and the CALCOMP plotters. The post=-
processor is also provided by the DISSPLA package.

The development of the formal language was structured according
<> the basic application requirements of the svstem, as set forth by
~.z thesis sponsors (AFWAL/ACD). The Lawrence Livermore Laboratory
(LLL) LR Automatic Parser Generator (ref 7) was used to define the
language. These tables were then used 1in an existing LR(1) parser
sxaleton and combined with the semantics routines of the language and
application modules to generate calls to DISSPLA procedures. The
complete system was written in FORTRAN, a general purpose high-level
language.

ASGOL was designed to provide several advantages over a
comparable FORTRAN program with DISSPLA calls. Each of these will be
discussed throughout the course of this paper. First, the language
is block structured, providing modular program design and svntactic
error checks for Iinstructions available " only within specific block
levels. Second, the instructions were designed to be of a higher
level than the DISSPLA calls, i.e., a single ASGOL dinstruction mav
invoke more than one DISSPLA calls.

However, several disadvantages have been noted as well. First,
since the parsing 1involves usiang an LR parser, recovering from a
syntactic error is more difficult than the method already designed

within most FORTRAN compilers. FORTRAN compillers are weak 1in their

%

-

err. v diagnostics, which in most cases in-! ..+ only an approximate
line number and an error code number.

A second disadvantage is that the ASGOL system does not provide
the efficiency in DISSPLA calls that a FORTRAY program does. Several
of the calls in an ASGOL program may seem repetitive, but are
necessary to contend with the block str :ture of the language.
Various optimizing schemes could be impla=ented to {improve this

fault.

The system was originally designed to run {ateractively with the
user. At present this 1is unfeasible due t> the large core memory
requirements not only for the system, but also for the DISSPLA
package. It {s hoped that a later version of this system will be
available with interactive capabilities. A set of 1interactive

commands are already provided in the system for such an extension.

The remainder of this paper describes the efforts of this
thesis. Chapter II defines the application requirements and the
expansions that were applied to the criteria of the system. Chapter
III describes the approach of designing the language, using general
purpose languages as well as graphics oriented languages as
guidelines. 1In chapter IV, the parts of the system, 1including how
the interpreter was implemented, are defined. Chapter V describes
how the language may be expanded to include 3-dimensional and user
defined primitive graphics and how non~immediate instructions wmav be
implemented.

Three appendices have been added for additional information of

’————-——-—-——————-—-————————-———“

the system. Appendix A gives the BNF code of the language wused to
generate the parser tables. Appendix B describes the system commands
and how the post-processor is used to produce the graphics output.

Finally, appendix C is a programmer’s guide to the language.

— o ama

~——""-"---l.lllllllIlllIII.lllIIIIllIllllllll.........!.-...........-.-.-.-_.-_-__‘p

II. REQUIREMENTS and EXTENSIONS

At the first of every month, AFWAL/ACD, the thesis sponsors,
produces a commander’s report. This report contains graphs and
tables generated from compiled data. Presently, the graphs are drawn
using both DISSPLA and PLOT-10 software packages, while most of the
tables are typed. By designing a graphics oriented 1language and
developing an interpreter for the language, the majority of the
report could be produced €from a single program. The {initial design
of the language was structured around four language requirements set
forth by the sponsors. These were that the language should be easily
Fxpandable, that graphics data could be read from data files, that
the complete program or any part of the program could be run, and
that the language have graphics blow=-up capabilities.

Expandability can be accomplished by all high-level languages,
but as will be seen 1in the next chapter on language design, block
structured languages provide the most efficient and simplest method
of implementation.

The data input instructions should be syntactically structured
to allow 1input from either the terzinal (for interactive
communication) or from an attached data file. Unformatted input and
output instructions provide the simplest syntactic constructs. By
allowing documentation (comments) to be placed in the data files, the
graphics output from an application program can be easily changed by
editing the data file rather than the program. This gives better
flexibility in how the data is to be presented.

The sponsors wanted a system that would not only generate the

graphs and tables from the complete program, but for sections of the
program as well while the AFWAL report 1is being reviewed. These
graphs could then be displayed on a large screen. By defining each
of the subtasks of a program (subtasks are defined in appendix C
under the section Beginner’s Guide) with a unique 1identifier, this
could be accomplished. By including the name of a subtask (or of the
program) with the system command RUN (see appendix B), only that
block of the program generates graphs.

An extension to this is the page segment blow-up. Several pages
of the commander’s report contain more than one graph. By specifying
the RUN command name as being that of a page segment (where a singe
graph is defined), DISSPLA calls are 1limited to only that segment,
and the graph 1is drawn on the complete screen.

Several extensions were made on the initial language design. A
text processor instruction could be used to draw text on a page far
graph documentation, wusing any of DISSPLA’s character fonts and
styles. Several editing instructions could bSe used to describe the
format of the text.

Although the multiple plot, linear graph is the only charting
style AFWAL presently uses to produce the commander’s report, other
basic types should be available in the language, including pie graphs
and bar graphs. The language should implement legends for the graphs

and have a versatile convention for defining axes.

ITI. LANGUAGE DESIGN

The approach of graphic languages proposed over the past decade
have all been one of three general methods. The most common {is
called a subroutine package. This design approach, like that used by
DISSPLA, is a library of external subroutines or procedures that are
called from a general purpose high-level language program. The
subroutine method suffers in that all routines are syntactically
available anywhere within the program. For this reason, they are not
considered "structured language routines". The packages therefore
have built 1into them an internal level structuring through package
}ocal variables. These levels 1insure that all necessary information
is presented 1in an ordered form. If the programmer calls any of
these routines out of sequence, errors result.

A less common kind of graphics language 1s known as language
extention. 1In this approach, new syntactic constructs are added to
an existing '"host" language. In most cases, a language extension
requires that modifications be made to the compiler or even that the
compiler be completely rewritten. This presents problems with the
portability of the new language dialect (ref 3). The host language
chosen is usually a block=-structured language due to the "nesting" of
blocks in such languages. The most commonly extended language 1is
ALGOL, since the constructs of this language lend themselves easily
to the description of graphical structures (ref 9).

The least common method chosen 1is the design of a new graphics
oriented language. A common disadvantage to this approach {s that it

seldom attracts prospective programmers away from their current

languages. No matter what the deficiencies of the current language,
the programmers learn to get around them and often use these

deficiencies to their advantage. Graphics oriented languages (and

some language extensions) are commonly implemented with an
interpreter or precompiler. The source program consists of a
sequence of instructions constrained by the syntax of the graphics
language. When compiled by the interpreter or precompiler. These
instructions are translated ianto commands for the host language.
Although the graphics oriented language poses several design
problems, the implementation is basically straight forward. This was
the approach taken as the design method for ASGOL.

- In designing a graphics language with the constraints 1listed in
chapter II: that of being an LR(l) language and the requirements set

by the thesis sponsors, ten sgpecific parameters were considered

important to the language design phase.

1) To establish and enforce the programming conventions that
will insure absolute cooperation of the parts: This means that the
language should be structured such that the syntax prevents
instructions from being called in levels that do not support their
implementation. For example, it is impossible to draw a graph until
the format of the screen page and the location of the plotting area
within the page have been previously defined. Also, the language
should assist a programmer 1in writing large programs when blocks of
the program are developed separately and assembled together at a

later time. This encourages top-down flowchart design 1in the

development of large or complicated programs.

2) Program structure of the language: ALGOL-like languages

provide a high degree of security through the scope and locality
associated with block structuring. If a constant or variable is
needed for only a particular part of the program, it can be declared
to be local to that subtask thus insuring a close association
between variables and the instructions that use them. Also, a
programmer can be absolutely sure that no other parts of the program
will access these variables.

Furthermore, this type of structuring allows dynamic allocation
of the names, the types, and the +wvalues of variables and counstants
stored in the symbol tables of the interpreter system. Since the
blocks of an ALGOL-like language are always completed 1in reverse
order in which they are entered, the storage area of variables in the
symbol tables can be reallocated as soon as they are no longer
required.

3) There were two functional requirements of the language that
were met in addition to the requirements set by the thesis sponsors:
the use of arithmetic operations and string manipulation. In most
business situations, the input data used to draw granhs and charts {is
in the form of raw data requiring computational analysis before they
can be graphically presented. In addition, the analysis may
represent not only past and present trends, bdut future trends as
well. These trends are often based upon physical mathematical
models. By designing arithmetic as well as conditional expressions
into the language and applying the standard format for algebraic
precedence, the programmer can not only evaluate the input data, but

also determine during execution how the data is to be presented.

Since DISSPLA’s most significant contribution to graphics
display is the string manipulation of character fonts 1t would have
been a mistake not to 1include several instructions to implement
these fonts without inhibiting the versatility of the DISSPLA
instructions.

4) DISSPLA Interface Requirements: As stated above, DISSPLA is a
subroutine package that implements its own internal level structure.
There are four levels in DISSPLA as shown in table 1. With each
legal call 1instruction to the DISSPLA package, a check is made to
determine whether the requirements for raising the 1level of the
package have been met. There are additional instructions that must
be included to lower the level as well.

The format and structure was carried through to ASGOL for
compatibility with DISSPLA. The basic physical structure of DISSPLA
is the page which represents a single "image" of one or more objects.
Each image 1s required to have a defined page number, page border,
subplot area, physical origin, and an axis system, litigated by the
levels shown in table 1.

TABLE 1

DISSPLA Levels

, before {nitialization

1 after initialized page

2 after page border,physical origin,
l and subplot area defined
| axis system defined

10

5) 1Instruction Control UlLevel: It was inevitable that the
hierarchical structure of this 1language over the host language
(DISSPLA) would produce a semantic gap between the two; however, by
designing the language with this in mind, the problem was somewhat
lessened. The conflict was the inverse relationship between
versatility and simplicity. By making the language versatile, the
number of instructions in the language become too large for any
practical wuse and therefore require a deep understanding of the
constructs, and the language defeats its own purpose. In an
opposite light, over~simplification increases the semantic gap and
1if any type of versatility is available, the instructions become too
“complex.

6) Error recovery: Many language designers fail to recognize the
importance of designing a language with error detection and recovery
within the syntax of the language. Instead, 1t is 1left to the
interpreter or compiler to detect almost all possible programming
errors and 1issue a message for each. This means that the system
becomes more complex. Subtle errors may be easily overlooked and the
system cannot provide complete error detection. By developing much
of the error detection into the syntax of the language, the system is
relieved of much of this task, and actually ©provides better
reliability and security against errors.

Since program debugging is often an exaustive and time consuming
part of software development, 1t 18 also 1important that when
syntactic (as well as semantic) errors are detected, the svstem

provide a detailed description of the error as well as pinpointing

11

'

its location. A difficult task 1In any system is syntactic error

recovery, especially for LR parsers. However, it is important that
the system recover sufficlently to continue parsing and check as much
of a program for further errors as 1s possible. Error recovery is
discussed further in chapter IV.

7) Readability: When the objective of readability by a human
being 1s replaced with readability by the host language, the
programmer is forced to write an excessive amount of comments to
document a programe. When the language 1is designed to produce good
self-documenting code, the wuser does not have to contend with this
difficulty. Reserved words in the language were chosen, therefore,
“to best describe linguistically what the instructiomns do.

Also, readability 1s often sacrificed for writability by
providing an unlimited number of default conventions and implicit
assumptions in the language, as well as abbreviations of reserved
words. These conventions were avoided.

8) Input and output interface: Since the data used to generate
graphs and text often come from attached local files, the language
was designed with several simple instructions to read data from a
numbe: of sequencial files. In addition, an output instruction was
included to write data to the output file, to the terminal, or to a
specified output tape. This provides better debugging capabilities
for programs and, more {importantly, allows data obtained from
computations to be stored for later use.

9) Iterative and conditional instructions: A language whose only

primitive structure is sequencial execution provides a very limited

12

implementation format. Almost all languages therefore contain some
forms of looping or decision constructs to provide better
£lexibility.

ASGOL was designed with all four of the primitive structures set
forth by Bohm and Jacopini (ref 2). These are the composition, the
selection (IF structure), and two {iteratives (WHILE and REPEAT
structures). In addition, the selection was extended to include the
CASE structure and the FOR structure. Since all programs can be
written wusing these oprimitive structures (ref 2), the GO TO
instruction was aveoided.

10) Previous experience and familiarity with other languages:
Much of the language design was drawn from various existing language
structures. The reasons were two-fold. First, an ALGOL-like
structure was chosen not only for its nesting level constructs (and
ease of expansion), but also for 1its familiarity to many programmers;
and second, much of the language was syntactically structured with
existing constructs already widely used.

In particular, five points were considered in the syntax of this
language: modularity, open-end parameter formats, column dependency,
instruction delimiters, and types of comments.

Modularity is the capability of designing a program in capsules.
Each capsule of the program is independent of all others except for
the affect 1t may have upon global variables. Although modularity
can be accomplished with almost any high-level language, ALGOL-1ike
languages provide a much more efficient, readable, and most of all

expandable method of modularity through their block structure. ASGOL

13

extends this ability further. By allowing any of the blocks to
actually have no instructions at all, it is possible to define blocks
early 1in the program design and add them in later. This also
encourages top-down flowchart design, which is an important aspect of
anv software development.

Open~end parameter formats unfortunately have been used 1{n some

graphics languages (ref 1l). An open-end parameter format means that
not all of the parameters of the 1instruction have to be specified.
When the instruction is interpreted, the parameters not specified at
the end of the parameter list are initialized to a predefined default
value (by the system or the user).
- At first glance, this type of structure seems advantageous,
allowing the programmer to define only those parameters that are
actually needed. However, problems often surface when debugging a
program.

One problem occurs when, for example, a programmer wishes to
change only the parameters at the end of the instruction yet does not

know what the default values of the parameters are. Most of the

languages that use the open-end format allow parameters to be
defaulted by a list of parameter delimiters (commonly the commad). If
however the programmer does not insert the correct numher of

delimiters, the system will interpret the declared parameters 1in the

wrong positions (assuming the parameters are of the same tvpe).

Naturally, the results will be wrong and the reason for the errors

may be hard to determine. Similar situations arise when extra

parameter values are inserted or left out mistakenly.

14

All of these problems describe a snecific deficiency of this
format: the system cannot compare the number of parameters read to
the maximal number of parameters that the instruction allows.

Column dependency: Column dependence occurs when particular

colums of each input line (sometimes called a card) are used for a
specific purpose. In FORTRAN for example, the first five columns are
used as labels, column six {s a flag that defines the present line to
be a continuation of the previous line, columms seven through 72 are
used for instructions, and 73 through 80 (assuming an 80 column
format) are not read by the compiler. If a programmer oversteps
these boundaries, errors are certain to occur.
- Unformatted column structures on the other hand allows better
utilization of storage space and provides more flexible indentation
for program readability. 1In addition, blank lines may be inserted to
separate sections of the program and a single instruction may occur
over any number of lines without setting a flag. (Most FORTRAN
compilers allow only 19 continuations for a single instruction.}
Furthermore, more than one instruction may be packed on a single
line.

When a language such as ALGOL is designed with unformatted
column structures, symbols are often used {(commonly the semicolon) to
establish the end of each instruction. There are good reasons for
using instruction delimiters. Delimiters provide better readability,
especially when several instructions occur on the same line.
Howev/er, when delimiters are mandatory, the rules for using them are

often confusing. For example, 1in PASCAL, all instructions within a

15

block must be followed by a semicolon, except for the last
instruction. When blocks are nested, it becomes even more difficult
to remember where the delimiters are placed. It was for this reason
that an 1instruction delimiter was avoided in ASGOL. Since all

instructions were based upon a common construct of the form:

instruction name (parameter list)

where the instruction name is a single reserved word, it was felt
that readability was not impaired.

If the purpose of a programming language is to help a programmer

“in documentation, the design of a good comment convention must be an
important concern (ref 8). There are several designs that thave shown
to provide little support for documentation. Both comment methods
used by ALGOL~60 were eliminated. The first method allows placing
comments between an END and the next semicolon, END, or ELSE found on
the input string. This convention can prove disasterous if the end
of the comment delimiter is omitted. The second ALGOL-5D method
allows placing comments between the word COMMENT and a semicolon.
The word COMMENT unfortunately occupies space that could bYe better
utilized (ref 8).

Another method eliminated due to its column dependence, was one
in which a delimiter is placed in a specific column to define an
end-of-line. Characters after the delimiter are not scanned as text.

his is the method used by some assembly languages and bv FORTRAN.

Two methods remained in consideration. The first is similar to

16

the previous case except that there 1s no column dependence upon the

delimiter. The second convention is the use of special brackets to

enclose comments. Both of these conventions were
ASGOL. The delimiter in the first case was chosen
character set (-=-~), since this reduces the chances of
a single character delimiter. The special bracket

taken from PASCAL: the bracket head /* and tail */.

17

implemented by
to be a double
a misnunch over

convention was

o -

UV WERENNe =

IV SYSTEM DESIGN

Once the initial design phase of the language (the first of
five) was completed and the language was written in LR(1) BNF code,
the parsing tables were generated by the LR(1l) language analyzer. A
description of these tables is given aloung with the BNF code wused to
generate the LR tables in appendix A. It 1is not necessary to
understand how the parsing procedure works unless the language is
expanded to 1include other constructs. Semantic changes to the
language can be made directly 1in the system’s semantic routines.
System expansion is discussed in chapter V.

The parsing tables are used by the system through the common
block called TABCOM. This common block 1is only available to those
routines that require them.

The system’s subroutines are combined into five separate groups:
the main system, the scanner routines, the parser routines, the
semantic routines and application modules, and the error routines.

The interrelationship of these groups are shown in figure 1.

18

MAIN ——p» PARSER ————» SEMANTIC

N /
YV ¥

SCANNER

R/

ERROR

FIGURE 1 System Interrelationships

The last section discusses the implementation of the symbol
tables and the common blocks associated with the storage of symbol

information for the entries.

Main System:

When the system begins execution, it sends a welcome message to
the terminal and issues a ready prompt “COMMAND=". (The system was
designed with the intention that later versions of the system would
run interactively with the user.) ! ready prompt is 1issued every
time the system is ready to accept another command from the terminal.

The system commands are entered from the input file (or the

terminal) and the system retrieves the tokens of each command

19

individually by calline the scanner routines, which return the entry
number of the command token 1in the +vocabulary. A complete
description of the system commands i{s listed in appendix B. Commas
are used between each token *to flag the program that additional
tokens remain on the input line. If the user does not supply the
system with all need2? information required to perform the command,
the system will prompt the user for the information needed. Since
the system at present .loes not run interactively, it 1is recommended
that all information be supplied on each input line. Figure 2 shows

the routines associated with the main system.

GRAFPAKR INITTOK ~——— IFNDTK
- E HELPSUB
INITIAL ————— CLRAXIS
—— CLRSTK
—— CLRVART
L—— CLRLEX

FIGURE 2 Main System Subroutines
When the RUN command is detected, the main system calls the
initializing routines which set all common block variables needed for
the grammar pérse to 1initfal values. The subtask name specified in
the RUN command is entered into the symbol tables for reference by
the semantics routines and a call is made to DISSPLA to create an
intermediate plot file called PLFILE. The parser routines are then

called to begin the parsing procedure.

Scanner Routines:

The scanner routines (also called the 1lexical analvzer) are

called to retrieve tokens from three locations: command tokens from

20

tape 5 when called by the main system; language tokens from the
program input file (tape 7) when called by the parsing routines; and
data tokens from one of the data 1input files when called by the
semantic routines. All data used by the system are read through the
scanner routines.

After each line of the {inpat has been scanned, GETLIN is called.
This subroutine reads the next input line from one of the input files
and stores these characters in a line buffer. Two pointers are used
with the line buffer: one to point to the next unused character in
the line buffer; the other to point to the last character in zhe line
buffer. When GETLIN 1is called to read a new text line from the
‘program input file, a check is made to determine if an error had been
detected on the previous line. 1If so, a point """ is written to the
program output file (tape 10) in the appropriate colummns where each
error ocurred. The line read 1is then written to the program output
file. Figure 3 shows the subroutines associated with the scanner

routines.

SCANNER ——— DIGIT
GETLIN
IFNDTK
LETTER
L— NUMBER
FIGURE 3 Scanner Subroutines
When the scanner routines are called, the next token 1is

determined by the following steps:

1) remove blanks and comments from the text;

21

2) detect for multicharacter tokens, 1i.e., resersed words and
identifiers

3) detect for special symbols, e.g., "=" and "=>";

4) detect for numbers, i.e., integers and reals;

5) detect for character strings; and

6) issue an error message that the token read is an illegal
token, then scan for another token. When the token being scanned has
been identified, {t i{s returned through SCANNER’s single parameter.

For reserved words and special symbols, the parameter contains
the pointer into the vocabulary of the token read. For an
identifier, the name 1s placed in a symbol string (SYMSTR). For
Tnumbers, the digits are read sequencially and translated into che
internal machine representation, and the values are passed back
through either of two lexical common wvariables IVAL or RVAL.

Since the system was written in FORTRAN which requires that
memory be declared statically, several methods were designed to
provide better efficiency of storage space. The manipulation of
character strings was one such case. A string stack was designed to
store character strings in a dynamic fashion. Character strings are
read 1into the stack starting at the stack top by 'pushing" each
character as {t {s read. After the complete character string has
been pushed, SSTART returns the pointer to the top of the stack prior
to inserting the character string, and SLNGTH returns the number of
characters pushed onto the stack (the number of cells 3llocated to
the string.)

STRLEV i{s a single-dimensional array that contains the poiaters

O

to the stack top for each lexical level the system is in. Each time

a new level is entered, LEXICAL is incremented and the pointer to the
stack top is pushed onto STRLEV. This simulates dynamic allocation

for each lexical level. As characters are read, they are pushed onto

the stack and the stack pointer is changed to point at the top of the
stack. However, since the stack pointer of the previous 1level has
been saved, at the end of a block, LZXICAL i{s decremented and the
stack pointer is '"popped" from the STRLEV stack. (There are no
instructions 1in the stack pop; it 1s performed {implicitly wher
LEXICAL 1is decremented.) All of the characters pushed onto the stack
in the level completed are no longer accessible. This simulates a
deallocation of the STRING array. Figure 4 1{llustrates allocation

and deallocation of character strings.

23

STACK pointer

T
A

[]
. |
c_-__'_‘ | 1 1
" j
- = | |
STRING STRLEV
i (a)
—_—
. —
- :r\ STACK pointer
[]
[]
T S

.
]
L) i
= T ol
— — : !
-—
STRING STRLEV
(b)

FIGURE 4 String Stack Allocation

24

In figure 4(a), the system parser enters the fourth level after
which a block of characters were pushed. In figure 4(b) another
level has been entered and a block of characters were pushed onto the
stack within this level. %hen level five completes, the string stack

returns to the state in figure 4(a).

Parser Routines:

; The parser routines, combined with the LR(1) tables generated
from the BNF language description, form the LR(1) parser package.
The parser skeleton (the LR(1l) parser and the scanner routines) of
the system was provided by a previous graduate student at AFIT (ref
10) who obtained them from the Lawrence Livermore Laboratory (ref 7).
The skeleton was modified to fit the specific applications of the
ASGOL system.

The LR(!) parser works as a push-down deterministic finite
automatum. Four of the five properties of the S-tuple are provided
by the tables in the TABCOM common block:

1) a token vocabulary,

2) a finite alphabet of elements called states,

3) an initial state, and

4) a final state.

The £fifth 1is a set of functions that deteruine the next

c figuration state of the parser given the current state and a

25

~————-—_——-________’

single look=ghead token (combined to be called a handled. 1LR(1)
means that only one look-azhead token 1is required to uniquely
determine the next state. The push~down was lmplemented with a
parser stack and developed so that each stack locatfon would contain
all information needed for each configuration state.

The LR(1) parser generates a left-right bottom~up parsing
procedure of the input program (called a grammer). The bottom-up
technique is to start with the input tokens {(passed by the scanner)
and try to reduce them {nto non-terminal syubols. Figure 5 shows the
subroutines assocliated with the parser routines.

- INTPRT ~————y DORED

——— DOTRAN
p———— IFINDT
b IFINDR

FIGURE 5 Parser Subroutines

The LR(1l) parser procedure {is implemented through a FORTRAN
constructed compilation DO loop. Each loop corresponds to a single
canonical parse step. An exlit is made from the loop on one of two
conditions: when the current state of the parser {s the final state
or when a system or syntactic error i{s detected and recovery cannot
be made. (Error recovery is discussed later.)

Within the compilation loop, one of three sequencial actions are

performed for each 1{iteration. The first actiomn is a reduction

attempt given the handles and the curreat look-azhead syubol. A
reduction is performed by popping from the parser stack a specified

aumber of stack locations. The actual number correspoads with the

—\“

length of the syntax sentence being reduced. The semantic routines
are called and the production number is passed as the parameter.
Upon return, the new configuration state is found and the state, the
look-ahead token, and the information from the semantic routines are
stored into the semantic stack top location.

The second action 1s a transition attempt. A transition is
accomplished by pushing the new state (determined by the handles and
current look-ahead token) along with the look=-ahead token, on to the
top of the semantic stack.

If both the reduction and transition attempts fail, a syntactic
error has occurred and the error routines are called. A syntactic
“error occurs when an illegal look-ahead token has been scanned. A
token 1s 1llegal when it 1s not one of the tokens acceptable to
perform a reduction or transition. If the error routines recover,
the parsing continues; otherwise, system control returns to the main

system.

Semantic Routines:

The semantic routines, along with the application modules, are
used to generate the host language (DISSPLA) calls. These routines
also describe the semantics of the language. A semantic routine
contains the set of instructions necessary to perform the semantics
of one language syntax sentence. All of these routines have been

written into a single FORTRAN subroutine called SMANTK. A set of

GOTO’s at the head of the subroutine specify which routine is ton be

implemented with each SYMANTK call.

27

Once a program has been parsed enough to draw a graph or text,
the semantic routines call the application modules that perform the
DISSPLA calls. The application modules have not at this time been
fully developed. FTigure 6 shows the subroutines associated with the
semantic routines.

SMANTK CHARSET

+——— ENTRVAR
: ERROR
——— LOOKUP
——— PAGEPOS

FIGURE 6 Semantic Subroutines

Most of the routines describe the semantics of the language by
performing computations or changing and manipulating data stored in
the semantic stack and symbol table common blocks. (Several of the
routines contain no instructions at all.) The information needed for
each routine can be obtained from the parser stack above the stack
top. This {nformation i{s then reduced and stored into the location
at the semantic stack top.

Several of the parser routines have not been implemented. Most
of these deal with the {terative and conditional constructs of the
language. These constructs invol-e non-immediiate executable
instructions. For example, consider a simplification of the language

WHILE construct:

WHILE <expression> DO <block list> END WHILE

28

Since this construct may involve a conditional loop of =more than

one 1instruction (or even subtasks), the {instructions must he
retained in their original form before they are reduced to <block
list> and the while expression can be evaluated. The information
needed for the complete <block 1list> must be stored in a single
semantic stack entry. One method for accomplishing this is described

in the next chapter.

Error Routines:

During the interpretation of a program, four types of errors mav
‘occur: system errors, syntactic errors, semantic errors, and
warnings. €Each of these affect the system in different wavs and are
handled differently.

Svstem errors occur when the program exceeds the dynamic
allocation 1limits of the system stacks. These errors include a
parser stack overflow, a STRING stack overflow, a wvariable table
overflow, and an axis table overflow. Since the parser or the
semantic routines can no longer effectively interpret the program,
the parser writes the error diagnostics to the output file and
returns to the main system.

Syntactic errors occur when an illegal token has been scanned.
Syntactic error recover is discussed later.

Semantic errors and warnings occur 1in the execution of the
semantic routines. Although both of these do not affect the parsing

procedure, when a semantic error 1is detected, the DISSPLA package

N

calls are discontinued. Warnings recover sufficiently enough to
continue without affecting the DISSPLA calls.

After the program has been parsed, error diagnostics are written
to the output file giving the location (line number and column) and a
short description of every error detected. Presently, the system
supports over 100 semantic error and 68 warning checks 1in the

semantic routines as well as all system and syntactic errors.

Svantactic Error Recoverv:

The LR(1) grammar parser generates a syntactic error whenever
'the current loock-ahead token is neither a legal token for a redvction
nor for a transition. To determine which of the two can be performed
at the current configuration state (NOWSTA) where the error occurred,
a check can be made with the one-dimensional arravs FRED and FTRN
generated by the language analyzer. A reduction s possible Lf
FRED(NOWSTA) is less than FRED(NOWSTA+1); a transitrion 1{is possible
1f FTRN(NOWSTA) is less than FTRN(NOWSTA+l). One of these checks will
always be true for each state in an LR(1l) language (except for the
final state) since each state must provide a path to another.
Furthermore, it can be assumed that the cause of the error is either:

1) a sequence of one or more illegal tokens have been added to
the program,

2) the present {llegal token scanned has replaced a legal token,
or

3) a sequence of one or more legal tokens have been omitted from

the program.

30

——s_—ﬁ‘

| Syntactic error recovery occurs {n two steps. *{rst, 1if a

reduction is possible at NOWSTA, a reduction error recovery attempt
is made. 1If a reduction is not possible or if the reduction attempt
fails (several situations arise where both reductions and transitions

1 are possible), a transition error recovery attempt is made. If both

attempts fail, the system {s unable to recover from the error.
The implementation approach for both the reduction and

transition attempts are very similar. They differ only 1in

determining all of the possible states that may occur after NOWSTA,
the configuration state when the syntactic error was detected. Given
NOWSTA, it is possible to determine all of the next legal tokens that
“are acceptable in the 1input string. These tokens can then be
compared with a set of look=-ahead tokens scanned frorn the input.
However, as can be seen in figure 7 for ¥ legal look=-ahead tokens,
the number of searches 1increase exponentially as the level XN
increases linearly. The <circles represent the configuration states

that occur given the state at the previous level and a legal token.

31

T TR

S 3
,///’/ S S
% S 5
S S S
' / < S S
, 5 S S
ol S S
7
/ s s
NOWSTA S S
\ S S
S 5 S
\ s S
s :
S S
S Sess S
- X S < S
Seee S
LEVEL 0 LEVEL 1 LEVEL 2 LEVEL 3

FIGURE 7 Possible Look=-ahead States

Since the complexity of the implementation also {ncreases with
the number of searches required for N levels ({.e., at each new state
level, all reduction and transition checks must be made), the
reduction and transition attempts were limited to three look-zhead
tokens (the illegal token and the next two tokens on the input

string). This was chosen as a compromise between recovery reliability

and the amount of computer time and memory necessary for all

searches.

Svmbol Tables:

Checking the correctness of a program’s semantics and perforaing
the semantic actions requires knowledge of all identifier attributes.
These 1identifiers are the constants, variables, and subtask names
used in the source program. The attributes of constants and
variables include the name, the basic type, the array dimensions, the
lexical level, and the value(s) of each identifier. For su'task
names, the attributes include the name and the subtask type (PROGRAM,
SECTION, PAGE, SEGMENT, or RUN identifier).

A record to contain the attributes of an identifier is allocated
within the semantic routines when the identifier s declared. A
hashing function applied to the identifier name returns a hash
address (between 1 and 50) and ENTRYPT(address) becomes the pointer
into the new record. The size of the bucket, ENTRYPT, was chosen for
conservation of memory with a minimum number of name collisions.
Collisions are discussed below. Figure 8 1{llustrates how two
identifiers AAA and BBB are entered into the table. The hashing
method provides an efficient method of seavching for identifiers.
If, for example, a search was to be made for AAA, the hashing

function will always return the same address.

33

ENTRYPT

1 d AAA
2 f o—————> ATTRIB
3 . .
4)

.

.

.

48 ___;_—_T——'D BBB
}

49 . ! < ATTRIB

- 50 . i i .

FIGURE 8 Example Symbol Table Structure

A speclal case occurs when two identifiers hash to the same
address (called a collision). This will always be the case for
identifiers with the same name but declared in two different levels.
Therefore, a chaining method was implemented. Each table record has
a polnter attribute that points to the next identifier at the same
hashing address.

When a collision occurs, the new record is inserted at the head
of the chain. There are two reasons for this. First, when the table

is searched for a specific entry, the .. ashing function returns the

34

address of the head of the chain. FEach entrv n: lsng the chain 1is
compared with the entry name beling searched I>r. The rule for
finding the correct declaration of an identifier 1is to look 1in the
current lexical 1level or block of the program ind proceed outward
until it is found. Although two identifiers with the same name hash
to the same address, the search ends when th~ “irst 1dentifier {s
encountered, which 1s always the one in the =:losest surrounding
block. Any other {dentifiers with the sa=- -11me therefore are
inaccessible to the system.

The second reason for inserting records at the head of the chain
involves the deallocation of records each time 1 block 1is exited.
“Since blocks are exited in reverse order in which they are entered,
all identifiers declared within the block are at the head of the
chains. By searching down the bucket, a check can be made ({nto the
head of each chain. If the lexical level attribute of the first
record of the chains corresponds to the block level being exited, the
record is removed and the next entry of the chain is placed at the
head. The record is deallocated and the comparison is repeated until
all 1identifiers declared within the block have been removed.
Consider, for example, an identifier CCC declared within a block
local to the block AAA and BB3B were declared in, as in figure 8. TIf
the hashing function "maps' the name CCC into the same address as
BBB, the results are as shown in figure 9. When the block that CCC
was declared within 1is completed, the name 13 removed and the

structure returns to that shown in figure 8.

35

ENTRYPT

1 e AAA
2 >~ ATTRIB
R —— _—
3 . .
4{ .
r—-_—
[]
[
L]
48 - - cCcC BBB
49 . ATTRIB ATTRIB
50 . - .

FIGUR™ 9 Example Symbol Table Structure

When an identifier is declared to be one of the basic types
integer, real, boolean, or character, or a unit variable, {1t is
allocated memory within the value stack (VALSTK) (one location for
simple constants and variables and N locations for array variables,
where N equals the product of the declared dimensions). A pointer
into the first location of the value stack allocated is stored in
VALPTR, one of the attributes for all constants and variables. The
value stack comprises two single-dimensional arrays: the first for

storing the values of the constants and variables, and the second for

36

determining whether tte variables are defined or not. %“hen a block
is completed, memory 1s deallocated from the value stack and the
second array is reset to undefined on the deallocated locations.

For constants and variables declared to be of type string (of
defined length), memory is allocated 1in the STRING stack. Each
string identifier’s attribute STRSTRT contains a pointer to the top
of the stack before the allocation occurred and STRLNG contains the
length of the string 1identifier. The STRLEV bucket is updated at
each allocation in the same manner as that used to allocate storage
for character strings read in the scanner routines. The record
attribute NEXTCH serves two purposes. First, it always points to the
“next character to be printed to the screen. (see the use of the
function POINTER described in appendix C under expressions.) Second,
when a record is allocated for an identifier, NEXTCH is set to 0.
This value is set to 1 only after the string identifier 1is defined.
For string constants, this will always occur within the declaration.

For axis variables, two records are allocated. The first is the
type already described: the wvariable record. The second is an axis
record which contains all six of the attributes needed to define an
axis: the title, the axis type, the min and max points, delta, and
ticks. The variable record is inserted at the head of the chain and
its attribute AXISPTR contains the pointer into the axis record, as

shown in figure 10.

NAME © AXIS
3 . ATTRIB
o, _
f L
 ATTRIB

FIGURE 10 Axis Variable Record Structure

CHAPTER V

This chapter {s divided into two basic sections. The first
describes a nethod of executing the 1{terative and conditional
instructions of the language and how this method may be applied to
interactive capabilities. The second section explains somne 1ideas on
extending the language to include other constructs.

As stated 1in the previous chapter, for the {terative ani
conditional instructions to be executed, the instructions fas well as
declarations for conditionals) within the {nstruction block must he
saved 1in thelr original unexecuted form wuntil the {terative or
conditional instruction has been completely reduced. For example,
‘consider an IF <true branch> containing the declaration and use »of a
variable. The 1instruction within the 1instructicn block cannot
evaluate the variable when it is encountered since it has not been
entered into the symbol table, i.e., the declaration has not bheen
executed. Instead, the variable name must be retained for later
evaluation. The described method below should be considered onlyv as
one possible method. The description of the records used £or this
method are not guaranteed to be completelvy correct. Some
modifications to this design may be necessary.

The design approach involves two steps. The first is the design
of an intermediate tree structured language. The second sten is
replacing the semantic routines of the present system with a routine
that builds a tree from the input text until a point is reached where
the instructions can be interpreted.

A tree structured language was chosen because this approach

39

———

provides a way of not only retaining the order of {instructions hut

retaining the block structure of the language as well. In addition,
the LR parsing and the basic nesting comstructs of the language
simplify building the tree.

There were two record types designéd to 1implement the tree
structure: the instruction record and the node record. Two record
tvpes were chosen due to the common grouping of the language syntax.
The number of record components for each type provides efficient
storage utilizatfon. Furthermore, each record component was designed
with as nuch commonality as possible to reduce ambiguity. The first
component of the record types was chosen to contain an integer
‘mneumonic to specify the constructs of the record.

In addition to these records, two arrav stacks are implemented
with the tree structure. One stack, noted in this chapter as CSTR is
used to store all character strings read from the program text. This
stack {is different from the lexical stack STRING. Where CSTR stores
all strings read while parsing not fmmediatelv executable
instructions, STRING stores only the characters within the lexical
blocks beinz executed.

Figure 11 through 14 show the structure of each mmeumcnic tvpe
in the {instruction record. All component names beginning with the
pointer symbol (#) represent pointers {nto the record names
specified. All other names are {nterpreted as actual wvalues. Shaded
record components represent those not recognized by the cnnstruct.
The tables following the record figures describe one method of

interpreting these values.

40

The last component of most instruction records are pointers to
the next {astruction record (IR) of the sequence of instructions.
The SECTION, PAGE, and SEGMENT record constructs were desizned to
retain the block structure of the language. The PROGRAM construct
will be explained later.

The node records are used to construct all expressions, specify
titles, and store data constants read from the iaput text file. All
expressions are defined with the EXPRESSINN node record at the tree
root. The VARIABLE and FUNCTION node records are the end-tvartices of
the expression trees. All other expression nodes are defined with
the OPERATION node record. The mneumonics of the node records are
“shown in figure 15 and 15.

The CSTR stack 1is a one-dimensional array. The stack is
implemented completely with the CS node record. Fach time a new
string has been pushed onto CSTR, a new CS record {s allocated, and
the pointer to the first character in the string and the string
length are stored. CSTRSP 1{s the pofnter to the top of the CSTR
stack.

Like the CSTR stack, the Identiffer Stack Entries (ISE) stack is
implemente.d only while parsing not {mmediately executahle
instructions. The ISE stack contains all {dentifiers encounteredi:
within the declaration blocks of the {nput text. Fach stack entrv
holds the complete name’s character string and a pointer to the
previous stack entry for the current lexical level. For the first
identifier of a subtask (or block), the pointer links the current

block entries to the last entry of the immediate outer contour. Each

time the {dent{fier 1is used within the block, the stack is searched
and the entry pointer (#ISE) is returned. It is possible to allocate
an entry each time an identifier is encountered; however, this does
not provide an efficient use of storage space. If an identifier 1is
not found within the ISE stack, the symbol table is searched.

In {mplementing an intermediate tree 1language, each semantic
routine must be replaced with a procedure that allocates memory in
both record types and both stacks while parsing the iaput text; then,
after storing the information within the records and stacks, links
the records into a tree structure. Once the parsing has reached a
point where the tree can be interpreted, the tree language
“interpreter (TLI) is called, and a pointer into the tree root is
passed.

One of the major disadvantages of the present system is that it
is too 1large for any practical interactive capabilities. With the
PROGRAM instruction record, it 1is possible to separate the system
into two parts; the first part being a 'compiler" that wusing the
LR(1) parsing procedures, generates a tree from the complete program
text (source code), the second part being the tree language
interpreter. After the parsing is completed, the compiled tree
language (including the two stacks and both record tvpes) can be
written to a tape, to be later read by the tree language interpreter.

The "compiler" portion of the system would include the parsing
routines (with the tables generated by the LR(1) language analyzer),
the scanner routines, the semantic routines that generate the tree,

and a portion of the error routines. The tvpes of errors that the

42

compiler shonuld detect are system stack overflows, syntactic errors,
and all compilation semantic errors and warnings. This relieves much
of the run-time error detection necessary during 1interpretation of
the tree language.

The "interpreter" portion of the system would {nclude the main
svstem (which accepts all system commands), the scanner routines, the
TLI routines, and the application modules. The scanner routines are
necessary for the unformatted input and output instructions of the

language.

43

PROGRAM

SECTION

PAGE

SEGMENT

CONST#DECL.

VAR#DECL.

BINDING

GRACE

BORDER

MARGIN

FRAME

——NEXT

‘1 AISE AR 7
2] #ISE 4R ' e——NEXT
3| #ISE! #IR ¢
<
4 DIR
—T" T
5! #ISE #IR #UVL
6 #1SEL #EX? /7 #IR
: 1
7' #ISEL TYP #EXPL. #IR
8, fawy S A
9 /L v | HIR
L P— A
10V, | #uv | AUV | #IR
b1t S #UV ! AUV | AIR
P12 Sy P, 1ok
. R
FIGURE 11 Instruction Records

44

o———NEXT

LA

r-—-—-——-——-m——“_m"

'

1 SET (BASIC) 13 #VAR TYPE #EXP #IR
SET (AXIS) 13 #VAR | 5 #AXS #IR
; SET (UNIT) 13 #VAR 6 | 4V #IR

I

SET (STRING) I3 AR 7 [JEXP IR

N

INPUT 14 #ISE TAPE L//,/ C#IR

16 #ISE; 0 . #L | ¥R

1

i

OUTPUT IS #ISE TAPE | | #IR '

{

CHANGE 16 . *FROM [T0 #IR ;
HEIGHT 17 - SHUV YT, IR
IF 18 #EXP #EXP ! #EXP < #IR
CASE HEAD 19 AVAR | ; < AIR

CASE SEQUENCE (CS) 20 f#CON #IR #CS

FIGURE 12 Instruction Records

45

WHILE

REPEAT

FOR

FOR LIST

DRAW LINE

DRAW ARROW

GRID

LEGEND

LEGEND

21 #EXP! #IR ig“«', #1R

22 #EXP AR | AR |

23 #VAR IR | FIR |

i
|

(24 #EXP | U-D ' FEXP| #EXP |

|
.

25 1 ., ., #UVLI #IR |

25 2 . INT : #UVL. #IR |

25 3 | #VAR fUVL| #IR |

26 X-Y | 1 . #AXS #IR |

— —_—

26 X~Y © 2 #ISE. #1R |

/

27/, ¥EXP: FEXP #IR }

28 #TIT STACK FRAME' // -,

;

28 #TIT' LOC A#TITL #IR

FIGURE 13 Instruction Records

46

r----————-—-—-—--————--—-—._-7

GRAPH HEAD 29 #TIT STACK FRAME '
V
GRAPH TAIL 30 INTRP #EXP SORCE #ISE
TEXT HEAD L31J JUST [fsrmsl #TIT
b
TEXT TAIL 32 #EXP #EXP #EXP ¢ i

AXIS SPEC (Ax3)§33f #TIT | I’YPEL EXP ",

UNIT VALUE LIST|34; #UV | #UV | #UV UV

FIGURE 14 Instruction Records

47

EXPRESSION (EXP)

EXPRESSION LIST (EXPL) . 1 { 4NR | & — - NEXT EXP NR

VARIABLE (VAR)

BASIC

UNIT

AXIS

STRING

AR oo

2 #ISE #Expﬂ1

3 #ISEVS - A

4 #ISET

5. #ISEV S

FIGURE 15 Node Records

48

CHARACTER STRING (CS) 6 #CHRS. LNG
CONSTANT (CON) 7 TYPE|VALUE;
DATA LIST (DL) HEAD 8 TYPE: ¢
i
7
DATA LIST CHAIN | 9 VALUE, e—D> -

IDENTIFIER STACK

ENTRY LIST 10 #ISE! LNG
UNIT VALUE (UV) 11 #ISE, #EXP
TITLE (TIT) 121 }#cs

12 2 #1SE

TITLE LIST (TITL) 13 TIT | e -- NEXT TITL NR
FUNCTIONS N - -
OPERATIONS 'OP; LEFT, RIGHT

FIGURE 16 Node Records

49

Although much time and effort went into the language design,
manf syntax constructs were not implemented in this version of ASGOL.
This gection describes four important concepts 1in adding to or
changing the syntax to provide a more efficient and flexible
language. The first two constructs deal with features that should be
available for any block structured language: the definition of
program blocks, and procedures and functions. The last twn describe
methods of extending the graphics capabilities of the language to

include and user defined 2- and 3}-dimensional primitive objects.

Block Structures:

True block structured programming languages such as ALGOL allow
the definition of program blocks anvwhere where 1instruction
statements (the BNF code 1in appendix A describes these as structure
commands) are allowed. Within these blocks, variables and constants
needed only for a paricular part of a subtask (the difference between
blocks and subtasks 1in defined bhelow) can be declared. This
description correlates with the declaration and use of constants and
variables within subtasks and provides the same advantages: close
association between the variables and the code which uses them.

The syntax sentences of a block mav »e defined as:

<gection block> ::= <block head> <declaration 1list>
<section structure command list>
<block end>

<page block> ::= <block head> <declaration list>

<page structure command list>

50

OO

<block end>
<segment block> ::= <block head> <declaration list>
<segment structure command list>
<block head> ::= BLOCK

<block end> ::= END BLOCK

The syntax of the block definitions were broken into the three
major categories SECTTON, PAGE, and SEGMENT for the same reason block
lists of the iteratives and conditional instructions were divided.
These constructs provide syntactic error detection of the structure
commands available within the block, e.g., page mnargin instructions
are syntactically not allowed with a page or segment subtask. The
block definitions may now be included within the structure commands

as follows.

<section structure command> ::= <section block>

<page structure command> ::= <page block>

<segment structure command> ::= <segment block>

With the syntax definitions shown above, 1t is 1mpossible to
define a subtask within a block. This prevents confusing blocks with
subtasks. Where subtasks describe the graphics representation level
of a program (e.g., a page subtask defines the structure of a2 single
page to be drawn), instruction blocks provide only the capability of
declaring a group of variables local to the structure commands that

require them. Also, while subtasks are given names, blocks are not.

51

BRI SRy

Procedures and Functions:

One of the most important constructs of any high-level language
is the declaration and use of functions and procedures within a
program. When used, these constructs produce compact source code.
Just as important as the description of procedures and functions are
the definitions of their parimeters and the method in which they are
passed both into and out of the procedures.

To distinguish between the declaration and invocation of
procedures and functions, procedures should be declared within the
deciaration 1list of a block or subtask. The syntactie structure

Fould be as follows.

<declaration list> ::= DECLARE
<constant declaration list>
<variable declaration list>
<procedure declaration list>
END DECLARE
<procedure declaration list> ::= <null>
<proceaure declaration list>
<procedure declaration>
/ <procedure declaration list>
<function declaration>
<procedure declaration> ::= <procedure head>
<procedure body>
<procedure end>
<procedure head> ::= PROCEDURE <identifier>
<parameter list>
<procedure body> ::= <section body>
/ <page body>
/ <segment body>
<procedure end> ::= END PROCEDURE <identifier>
<function declaration> ::= <function head>
<function body>
<function end>
<function head> ::= FUNCTION <identifier> : <type>
<parameter list>
<function body> ::= <section bodv>
/ <page body>
/ <segment body>
<function end> ::= END FUNCTION <identifier>
<parameter list> ::= <null>
!/ (<identifier list>)

52

<parameter declarition list>
<parameter declaration list> ::= <parameter declaration>
/<parameter declaration list>
<parater declaration>
<parameter declaration> ::i= <identifier list>
<parater type> <type>
/<identifier list> :
PROCEDURE
<parameter type> ::= VALUE
/ NAME
/ REFERENCE
/ FUNCTION

| The parameter names, according to the syntax structure specified
above, are declared twice 1in the procedure (or fuanction), the first
to define the order that the values will be accessed at invocattion,
‘the second to define the parameter type and the declaration tyvpe of
each name. The structure 1is similar to ALGOL except that all
{dentifiers must be given a parameter type. (ALGOL defines the

varameter type to be NAME by default.)

For ~7alue parameters, a value cell is created at invocation nf
the procedure and the wvalue passed into the procedure 1is stored
there. This provides protection against changing the -alue of a
variable argument.

For name parameters, the argument 1s defined to be an

exoression. The "formula” of the expression is passed 1nto the
procedure and the interpreter delayvs evaluating the expression until
it is needed.

For reference parameters, the address of the argument 1is passed
into the procedure. The address is then used to reference the value

needed by the proceduyre. This parameter type is used to return

53

values through the argument list. Figure 17 {llustrates the three

different types of parameters used in a procedure. The value of the

expression C 1s determined when the array variable B is declared.

DECLARE

PROCEDURE examp_proc (a,b,c,d)
a,c:NAME INTEGER
b:VALUE ARRAY (c] OF REAL
d :REFERENCE BOOLEAN
DECLARE . . « END DECLARE

END PROCEDURE examp_proc
END DECLARE

FIGURE 17 Procedure Declaration Example

To provide uniformity with the semantics of ALGOL, a procedure
or function should always be executed within the block environment {n
which it 1s declared (known as static binding). Like variables, once
the subtask (or block) in which the procedure was declared has been
exited, the procedure is no longer available unless the name of the
procedure 1s passed as an argument outside of the block.

To extend the graphics capabilities of the language, special
procedures could be svntactically defined bv the svstem or %y the
user to generate a high order of two and three-dimensional primitive
objects. These procedures are similar to the procedures described
above, except that they are invoked with the NRAW command within a

page or page segment subtask.

54

This version of ASGOL provides ounly the two-~dimensional
primitives LINE and ARROW. These could be easily extended to include
such primitives as circles, ellipses, squares, rectangles, arcs, and
crosses. Unit value parameters of these primitives should define the
location and size of each type. User defined 2-D primitives could
then be graphically generated using system primitives or other user
2-D primitive procedures. A 2-0 oprimitive could be syntactically

defined within the procedure declaration list as follows.

<procedure declaration list> ::=
<procedure declaration list>
<2-D declaration>
<2 =D declaration> ::= <2-d head> <2-D body>
<2-D end>
<2-0 head> ::= 2-D OBJECT <ideatifier>
<parameter list>
<2-D body> ::= <declaration list>
<segment structure command list>
<draw instruction list>
<2-D end> ::= END OBJECT <identifier>

The body of a 2-D object 1{s restricted to 1include only the
declaration of constants and variables, segment structure commands,

and a sequence of draw instructions.

3~D primitives may be declared in a similar fashion.

<procedure declaration list> ::=
<procedure declaration list>
<3-D declaration>
<3-D declaration> ::= <3-D head> <3-D bodv>
<3-D end>
<3-D head> ::= 3~D OBJECT <identifier>
<parameter list>
<3-D bodyv> ::= <i:claration list>
<segment structure command list>
<draw instruction list>

55

<3-D end> ::= END OBJECT <identifier>

Unlike 2-D objects however, 3-D objects can have transformation
parameters implicitly allocated at the object’s declaration. The
functions to perform the transformations could be built {into the
svstem. These parameters define the rotation (alpha, beta, and
gamma), the translation, and the scaling of the object when the
procedure is invoked. The rotation parameters define the rotation of

the object in the X, Y, and Z plane respectively.

56

1. Goodman, S. F. and S. T. Heleznienri, Introducrsion
the Nesizn aad Analwvsis of Al--2rithas. Yew Y
MeGraw=-¥111 Booxs, 1977.

2. %ohm and Jaconini. Alrorith=m Structures New7 York
MeGraw=-Hill Rooks, 1950,

3. Gries, NDavii. Conmniler Construction F 1

, 1971,

27933

Jdiego:

g
P

ic

Connuters. Yew %Yorkx: Joha i
4. 1SSCO. DISSPLA "ser’s ‘‘ganual, Version 7.3, San Di
Integrated Software Svstens Corporation, 1927
5. 1SSCO. DISSPLA TUser’s Mannu1l, Varsion 2.1. San Ni
Integrataed 3oftware 3Svstems Corponration, 197
A. ISSCO. DISSPLA "scr’s '*‘2nuli, Pnckat 'fanual. San
Intearated Softwars Svstens Corporation, 197
7. Wetherell, Charles and Alfired Shannon. L2 Aiatomat
Parser Generatar and L271Y Pirser. Lirermore

Lawrence Liv

3. Hirt, ‘tichael C.
Theorv Cours

ermare Labo

Lectur= Yot
2.

ritor

v, June 193793,

dvanced Conpiller

9. Jones Ben. ""An Sxtended ALGNOL=4N for Shaded Comn
’
Graohics," SIGSA?H/STISPLAY Praceedinas on
Sraphics Lannuazes: n. 1% (25-27 April 1374
10, Amburn, Elton P. The Sranhical Disnlav Yulzi-
NDinensional Aerodvainic “lhs “iel Na731. A L
and svstem, called ZT1W7YA, that 1ses the L2/
parsing techninue. Thesis, AFIT/GCS/'A/79D-1
Dec 1979.
11. Mahl Navid A. {APPE®, & Sranhics Oriented Lanzua
’ - N
Los Alamos Callfornia: Los Alamos Sciantifi
’

Laboratorv,

June 1372,

-~ 3 .
y WALl

anzuinte
)

’

Te.

APPENDTY A

LR(1) BXNF CODE OF ASGOL

<program> :!:= <program head> <program

<program head> ::= program <program

<program identifier> ::= <identifier>

<program body> ::= <declaration list>

body> <program end> .

identifier>

<section block list>

<program end> ::= end program <program identifier>

<declaration list> ::= <null>

/ declare <coms

tant declaration>

end declare

<constant declaration part> ::= constant
<constant declaration list>

<constant declaration list> ::= <constant declaration>

/ <constant declaration list>

<

constant declaration>

<constant declaration> ::= <identifier> = <expression>

<variable declaration part> ::=

/ wariable

<va

<variable declaration list> ::= <vari

/ <var

57

riable declaration list>

able declaration>

iable declaration list>

<variable declaration>

<variable declaration> ::= <idantifier list> : <tvpe>

<identifier list> ::= <identifier>

/ <identifier list> , <identifier>

<type> ::= <basic type>
/ <array type>
/ string (<string size>)
/ axis

/ unit

<string size> ::= <expression>

<array type> ::= array <bounds> of <basic type>

<bounds> ::= <array bounds>]

<array bounds> ::= [<expression>

/ <array bounds> , <expression>

<basic type> ::= integer
/ real
/ boolean

/ character
<section block list> ::= <gection structure command list>

<section listing>

/ <section structure command list>

<page listing>

/ <section structure ccmmand list>

g

<segment block list>

<section structure command list> ::= <null>

/ <section structure command list>

<section structure command>

<section structure command> ::= <assignment instruction>
/ <change instruction>
| <page margin instruction>
/ <char height instruction>
/ <if instruction typel>
/ <while instruction typel>
/ <for instruction tvpel>
/ <repeat instruction typel>

/ <case instruction typel>

<section listing> ::= <section>

/ <section listing> <section>

<section> ::= <section head> <section body> <section end>

<section head> ::= section <section {dentifier>

<section identifier> ::= <identifier>

<section body> ::= <declaration list> <section block list>

<gection end> ::= end section <section identifier>

<page margin instruction> ::= binding = <unit value>
/ grace = <unit value>

/ border = <unit value> bv

59

l <unit value>

<page listing> ::= <page>

/ <page listing> <page>
<page> ::= <page head> <page body> <page end>
<page head> ::= page <page identifier> (<page parameter>)

<page identifier> ::= <identifier>

<page body> ::= <declaration list> <page block list>

<page end> ::= end page <page identifier>

<page narameter> ::= <direction> , <margin set> ,

<number> , <location>

<locatlon> ::= <location signal> top

/ <location siznal> bottom

<location signal> ::= left
/ right
/ inside
/ outside

/ <null>

<number> ::= <expression>

<direction> ::= horizontal

/ vertical

<margin set> ::= left reset
/ right reset

60

/ center
/ <null>

<page block list> ::= <page s

/ <page

<page structure command list>

<page structure command> ::=
/
/

tructure command list>
<instruction>
structure command list>

<segment listing>

= <null>
/ <page structure command list>

<page structure command>

<margin instruction>

<frame instruction>
<assignment instruction>
<change instruction>

<char height instruction>
<if instruction type2>
<while instruction type2>
<for instruction type2>
<repeat instruction type2>

<case instruction type2>

<segment listing> ::= <segment>

/ <segment listing> <segment>

<segment> ::= <segment head> <segment body> <segment end>

<segment head> ::= segment <segment identifier>

6

(<segment parameter>)

1

<segment parameter> ::= <unit value> , <unit value> ,

<unit value> , <unit value>

<segment identifier> ::= <identifier>

<segment body> ::= <declaration list> <segment block list>

<segment block list> ::= <segment structure command list>

<instruction>

<segment structure command list>

::= <null>

/ <segment structure command list>

<segment structure command>

<segment structure command> ::= <margin instruction>

/
/

<frame instruction>
<assignment iastruction>
<change instruction>

<char height instruction>
<if instruction tyvpe3>
<while {nstruction type3>
<for instruction typel>
<repeat instruction type3>

<case instruction type3>

<segment end> ::= end segment <segment identifier>

<margin instruction> ::= margin <margin values>

<margin values> ::= (<unit value> , <unit value>)

<unit value> ::= <expression> <units>

62

<units> ::= inch

/ inches

/ <unit identifier>

<axis definition> ::= (<title> ,

<max> , <delta>

<title> ::= <character string>

/ <string identifier>

<type axis> ::= linear
/ log
/ logarithmic

/ month

<min> ::= <expression>

/ <month>

<max> ::= <expression>

/ <month>

<month> ::= jan
/ feb
/ mar

/ apr

!/ jul
/ aug

/ sep

63

<type axis>

o al it m—tl—

L / oct
]
/ aov
/ dec

<delta> ::= <expression>

<ticks> ::= <expression>

<frame instruction> ::= frame <frame thickness>

<frame thickness> ::= (<expression>) !

<assignment instruction> ::= <set instruction>
/ <input instruction>

/ <output instruction>

— .

<set instruction> ::= set <variable> = <expression>
/ set string <section identifier> =
<expression>
/ set unit <unit identifier> =
<ynit value>
/ set axis <axis identifier>

<axis specification>

<axis identifier> ::= <identifier>

<unit identifier> ::= <identifier>

<section {dentifier> ::= <identifier> {

<axis specification> ::= = <axis definition>

/ « title = <title>

64

/ . type = <twone axis>
/ + min = <ain>

/ . max = <max>

/ . delta = <delta>

/ « ticks = <ticks>

<if instruction typel> ::= <if head> <true branch typel>

<false branch typel> end if

<1f instruction type2> ::= <if head> <true branch type2>

<false branch type2> end 1if

<if instruction type3> ::= <if head> <true branch tvpe3>

<false branch tvpe3> end if

<1f head> ::= if <expression>

<true branch typel> ::= then <declaration list>

<section block list>

<true branch type2> ::= then <declaration list>

<page block list>

<true branch type3> ::= then <declaration list>

<falgse branch typel> ::= else <declaration list>

<section block list>

<false branch type2> ::= else <declaration list>

<page block list>

<false branch type3> ::= elge <declaration list>

Ce e et

PN S

<segment block list>

<while instruction typel> ::= <while head> do
<section block list>

end while

<while instruction type2> ::= <while head> do
<page block list>

end while

<while instruction type3> ::= <while head> do
<segment block list>

end while

<while head> ::= while <expression>

<for instruction typel> ::= <for head> <section block list>

end for

<for instruction type2> ::= <for head> <page block list>

end for

<for instruction type3> ::= <for head> <segment block list>

end for

<for head> ::= for <variable> = <expression> to
<expression> <by clause> do
/ for <variable> = <expression> down

<expression> <bv clause> do

<by clause> ::= by <expression>

66

<repeat instruction typel> ::= <repeat head>

<section block list>

end repeat

<repeat instruction type2> ::= <repeat head>

<page block list>

end repeat

<repeat instruction type3> ::= <repeat head>

<repeat head> ::= repeat

<case

<case

<case

<case

<case

instruction typel>

fiastruction type2>

instruction type3>

<segment block list>

end repeat

until <expression>

1:= <case head> <case seq typel>

end case

t1= <case head> <case seq typel>

end case

i := <case head> <case seq tvpe3>

end case

head> ::= case <variable> of

seq tvpel> ::= <case list> cde . » atlon list>

<section block list>
/ <case sev typel>
<case list> : <declaration list>

<gection block list>

<case 3eq type2> ::= <case list> : <declaration list>

67

<page block list>
/ <case seq typel>
<case list> : <declaration list>

<page block list>

<zise seq type3> ::= <case list> : <declaration list>
<segment block list>
/ <case seq type3>
<case list> : <declaration list>

<segment block list>

<zise list> ::= <int const list>
/ <character string list>

/ others

<character string list> ::= <character string>
/ <character string list> ,

<character string>

<variable> ::s <identifier> <array specification>

<array specification> ::= <bounds>

<input instruction> ::= input <identifier> : <source>

<source> ::= terminal
/ tape <int const>

/ <direct {nput>

<direct input> ::= data / <constant set> /

<congtant set> ::= <int const set>

68

/ <real const set>
/ <boolean const set>

/ <character string>

<int <onst set> ::= <int const> <list number>
/ <int const set> ,

<int const> <lis~ ainber>

<real const set> ::= <real const> <list nu~-:r>
/ <real const set> ,

<real const> <list number>

<boolean const set> ::= <boolean value> <list number>
/ <boolean const set> ,

<boolean value> <list number>

<list number> ::= : <int const’

<output instruction> ::= output <identifier> : <port>

<port> ::= terminal

/ tape <int const>

<change instruction> ::= change <from set> to <to set>

<from set> ::= <case set> roman
/ <case set> {talic

/ <case set> script

<to set> ::= special
/ math

/ instruction

69

Y

/ <case set> greek

/ <case set> russian

/ hebrew

<case set> ::!= upper

/ lower

<character height instruction> ::= height = <unit value>

<expression> ::= <condition expression>
/ <condition expression> <logic operator>

<condition expression>

<condition expression> ::= <simple expression>
/ <condition expression>
<condition operator>

<simple expression>

<simple expression> ::= <term>
/ + <term>
/ = <term>
/ <simple expression> + <term>

/ <simple expression> -~ <term>

<term> ::= <factor>
/ <term> * <factor>
/ <term> / <factor>
/ <term> mod <factor>

/ <term> rem <factor>

<factor> ::= <primary>

70

‘

“orimarvy>

<factor> ** <primarv>

;1= not <primary>

/ (<expression>)

/
/

<X Or v> i:s X

<variable>

<constant>

<character string>
float (<expression>)
integer (<expression>)

fraction (<expression>)

sin

cos

tan (<expression>)
inv sin (<expression>)

inv cos (<expression>)

inv

absolute (<expression>)
point (<section identifier>)
origin (<x or y>)

area (<x or y>)

reference (<section identifier>

string (<expression>)

length (<section {dentifier>)

Iy

<logic operato

r>

(<expression>)

(<expression>)

tan (<expression>)

<

<character string>)

71

gy wi oy s _ » . D -

<condition operator> ::= and

/ or
/ xor '
»
<constant> ::= <int const> F

/ <real const>

/ <boolean value>

-

<int const list> ::= <int const>

/ <int const list> , <int const>

<boolean value> ::= true

/ false

<instructions> ::= <draw instructure list>
/ <graph instruction>

/ <text instruction>

<draw inst=uction list> ::= <draw instruction>
/ <draw instruction list>

<draw instiuction>

<draw {instruction> ::= draw arrow <arrow stvle>
(<unit value> , <unit value>

, <unit value> , <unit value>)

72

!/ draw line (<unit wvalue> , <unir wvalue>

, <unit value> , <unit value>)

<arrow style> ::= <int const>

/ <variable>

<graph instruction> ::= <graph preparation ianstruction list>
graph <title option>
(stack form> <frame option>
<interpolation type> ,

<number plots> , <plotting points>)

<graph preparation instruction list> ::= <null>
/ <graph preparation instruction list>

<graph preparation instruction>

<graph prep instruction> ::= <graph {id instruction>
/ <legend instruction>

/ <axis instruction>

<graph id instruction> ::= grid <title option>

(<expression: , <expression>)

<legend instruction> ::= legend (<location option>

<title list>)

<location option> ::= <location> ,

<title list> ::= <title>

/ <title list> , <title>

<axis instruction> ::= <axis> = <axis definition>

73

” / <axis> = <axis identi{fier>
|
<axis> ::= <x or y> axis

<title option> ::= <title>

»

<stack form> ::= stack of <int const>

<frame option> ::= framed

<interpolation type> ::= linear

/ step
/ bar

/ stacked bar

hmaad b

/ spline

-

/ smooth /

/ ple

<number plots> ::= <expression>

<plot points> ::= <identifier>

/ <direct input>

<text Iinstruction> ::= text (<justification> <text stvle>
» <section name> , <start> ,

<length> , <size>)

<text style> ::= simple
/ cartog
/ complx
/ duplx

/ gothic

/ scmplx

/ simplx

/ triplx

<gtring name> ::= <string identifier>

/ <character string>

<start> ::= <expression>

/ next

<length> ::= <expression>

/ continue

<size> ::= <unit value>

<justification> ::= <horizontal format> justified

|/ <vertical format> centered

<horizontal format> ::= left
/ right

!/ l-r

<vertical format> ::= top
/ bottom

/ <mull>

<null> ::=

75

APPTMDIX B
SYSTEM COMMANDS

There are four general commands that the system presently
supports. These are CREATE, RUN, LIST, and END. All of the svstem

commands were developed with the intention that later <versions of

- _A-,s‘.‘l,“

this system would support interactive capabilities.
The CREATE command is wused to transfer a program from the

terminal (or input file) to the program input file. This provides an

alternative to attaching a file containing the program text. A file
TAPE7 is created with the CREATE command. Lines are read from the
terminal until a "$" is detected in the first column of the input
line. An end-of-file marker 1{s then written to the program input
file and a ready-prompt "COMMAND=" is issued.

The RUN command tells the system to begin parsing the program
stored in TAPE7. The subtask name following the RUN command
specifies the block of graphics to be generated in the program. 1€
the subtask name is the program name, the graphics for the conplete
program {is generated; for section and page subtasks (defined in
appendix C under Beginner’s Guide), the graphics for that specific
task is generated.

For page segment subtasks, the graphics instructions are drawn
within the complete domain of the page. Frame and margin
instructions defined within the page, but not within the segment, are
ignored.

The LIST command copies all or any part of the program {nput
file (TAPE7) or the program output file (TAPEI0) to the terminal. To

list the complete file, the commands are:

76

*M

LIST, INPUT,ALL
LIST,OUTPUT,ALL

and to list gpecific lines of the file:

LIST, INPUT,<# lines>,<starting line>
LIST,OUTPUT,<# lines>,<starting line>

a2t A el

The END command stops execution of the program.

77

e W i dape

frragicart &

APPEUDIX C
PROGRAMMING GUIDE

One of the mogt difficult tasks in designing a new high-~level
language 1is not 1in the design of the instruction set that is
available in the language, nor is 1t in the impleme:tation of an
interpreter or compiler to generate correct results from any
grammatically correct program, but it 1is the description of the
language in English terms. This is not to say that the design and
implementation of a language are not important. But, without a
complete description of the language for a user to follow, he or she
cannot be expected to write grammatically correct programs 1in an
Ffficient manner using the complete utilities available.

However, if the language 1s designed to allow the maximum amount
of freedom 1{in structuring and {f the {instruction set available is
minimized to accomplish the desired results, as was the design
purpose of this language, this task is simplified.

This appendix 1is divided into three sections: the beginner’s
guide, program enhancements, and string manipulation. The beginner’s
guide gives an introduction to program structuring and common
instructions available in the language for generating simple graphs
and text. The section on program enhancement discribes the use of
constants and variables, the 1instruction set used for declaring and
defining wvariables, and the structure of arithmetic evaluations. The
third section discusses the 1instructions that define the various
fonts and styles for characters drawn to the screen.

i. Beginner’s guide

Before discussing the structure of a program for this graphics

78

m"

language, several terms used 1in this appendix need to be defined.
The definitions of these terms should not be considered wuniversal in
scope, since several of the terms pertain specifically to this
language.

ALGORITHM: An unambiguous step by step sequence of instructions
used to describe how to perform a task or procedure. A food recipe
is an example of an algorithm.

FLOWCHART: A directed network of instruction blocks completely
connected by unidirectional paths between the blocks.

TOP-DOWN BLOCK STRUCTURING: A step by step refinement of an
algorithm into successively smaller tasks or subtasks.

- TASK: A definition of a desired result.

PROGRAM: Any of various methods wused to define the order in
which tasks are to be accomplished. A program varies from an
algorithm in that the program is written in the format of a specific
language.

PAGE SUBTASK: The set of instructions used to generate a single
page of graphics.

SUBPLOT AREA: The rectangular area in which all text, lines, and
graphs are to be drawn for the page or page segment.

PHYSICAL ORIGIN: The lower left corner of the subplot area
defined for the page or page segment.

LANGUAGE INSTRUCTION: A sequence of words andi svmbols
grammatically specified by the language and used ¢tn perform a
specific part of the subtask in which it is embedded.

PARAMETER: A wvalue wused by an instruction to perfsrm an

operation.

79

:

-

o

r—-——“_“

RESERVED WORD: Any of the 166 English words and legal svmbols
used for special significance in the language. A complete 1list of
these words and symbols are attached at the end of this appendix for
the user.

IDENTIFIER: A sequence of letters and digits not separated by
blanks, declared by the user for a single specific purpose. There
are four restrictions upon the use of {dentifiers:

1) an identifier must begin with a letter (A through
2);

2) only letters, digits (0 through 9), and the
underscore (_) are allowed in legal identifiers;

3) the 1length of the identifier must not exceed 10
characters; and

4) an identifier cannot be a reserved word.

Other than these restrictions, a wuser has complete freedom in
defining names for identifiers.

LITERALS: There are four classes of literals: integer literals,
real literals, character literals, and boolean literals.

INTEGER LITERAL: The character representation of a finite number
of consecutive digits. Examples are: 1026 , G , =81 , 1000 .

REAL LITERAL: The character representation of an integer number
followed by a period (.) And a fractional value. Examples are:
3.14159 , -16.103, .10 , 1. , 100000. .

CHARACTER LITERAL: A single letter, digit, or svmbol enclosed in
double quotations. Examples ares: "g", '"(¢","s","."

CHARACTER STRING: Any finite sequence of <characters (letters,
digits, or symbols) enclosed in double quotations ("). Examples are:

"THIS IS A STRING" produces the string:

THIS IS A STRING

80

iy,

P

produces the emptv string of length O

LIAIRI AN "

produces a single double quoation

It is 1mportant to note that any use of the double quotation
within a string must be printed twice for each double quote
desired.

[IRAR0RARIA1}

produces a double double quotation ""

et .

produces a single quotation
"The & symbol is used to continue"sd

"a string to the next line.”

In drawing characters on the screen, six specifal characters are
“‘used to define the font to be used. These characters are (,), +, -,
*, and /. To print any of these characters, enclose them in
parentheses(i.e. To print a "(" on the screen, the character sequence
would be "((})". In section III1 of this appendix, it will be shown how
shift characters are used to determine fonts.

BOOLEAN LITERAL: the two literals TRUE and FALSY that define the
result of a condition.

COMMINTS: Coxments begin with the svmbols /* anvwhere within a
progran and end with the two symbols typed in reverse: */. They have
no effect up~n the execution of the program and are used for the s.ile
purpose of program documentation. It *helps the reader understand
what the program is doing. Examples of comments are:

/* this is a comment */

g1

/* comments can be
formatted in almost any style
and can be stretched across any
number of lines. */

A special caution should be made to insure that all comments end
with the */ symbols. Without these to end a comment, program
instructions will be bvpassed between comments.

The language provides a second method of comments. With the
double character set =--, all text to the end of the line is treated
as comments.

Program Block Structuring:

The first step in writing a program for this graphics language
(or for any other language) should be to define the subtasks of the
program in a top-down structure. A subtask Is a fragment of the
program such that the sequencial execution of all of the subtasks
represent the complete program. Each subtask can be divided into
smaller subtasks, if necessarv, which again can be divided into even
smaller subtasks, until a point is reached when each subtask
represents the block of instructions used to generate graphics for a
single page (called a2 page subtask). This block structuring or
nesting of subtasks within larger tasks allows wversatility in the
prograrm, discussed in the next section.

All programs in this language begin with the reserved word
PROGRAM followed by a unique identifier to define the name of the

rogram. The program halts on the recognition of the reserved words
Pros¢ pProg g

END PROGRAM followed by the name o0f the program and a period (.).

A program subtask (but not a page subtask) begins with the
reserved word SECTION followed by an unique identifier to name the
section. The section ends with the reserved words END SECTION
followed by the name of the section. As can be seen in figure 18,

section subtasks can be declared within sections.

PROGRAM prog _name

SECTION sec_name_l

ENXD SECTION sec_name !
SECTION sec_name_2

SECTIOXN internmal_l

EXD SECTION internal 1

SECTION internal_2

END SECTION internal_2
END SECTION sec_name_2

END PROGRAM prog_name

FIGURE 18 Program Block Structure

A page subtask begins with the word page, followed bv a unique

R3

. e

TSI =9

identifier to define the name of the page, and a page construct list.
The page ends with the reserved words END PAGE followed by the name
of the page.

The page construct 1list 1is used to define the physical

construction of that page. It is a list of four parameters enclosed
in parentheses and separated by comnmas. These parameters will be
denoted as the page direction, the page margin, the page number, and
the page number location respectively. (It is important to note at
this point that the order of these parameters, as well as the
parameters used in all other instructions, is dimportant. Anv
variation in the order specified will produce errors.)
- The first parameter, the page direction, determines whether the
page format is to be HORIZONTAL or VERTICAL by placing one of these
two reserved words as the parameter. If the format 1is horizontal,
the page dimension will be 1l inches in the horizontal direction and
8 1/2 inches in the <vertical direction. If the format is vertical,
the dimensions are reversed: 11 inches in the vertical direction, R
1/2 1inches in the horizontal direction. To keep from getting
confused, just remember that the longest side (11 inches) 1s alwavs
in the direction specified in the parameter.

The page margin defines how the grace margin of the page 1is to
be set up. If the reserved words LEF7 RESET are wused as the
parameter, the margins of the page will be set to be 1 inch on the
upper, lower, and the right sides of the page, and 1 1/2 1inches on
the left side. (In the horizontal format, the upper and lower edges

are the 11 inch sides of the page; in the wvertical format, thev are

R

the 8 1/2 inch sides.) The 1 1/2 inch margin along one side of the
page 1is called the binding margin and allows space for tindiag the
pages together into book form. I the reserved words RIGET RESET are
used, the grace margin will be set to 1 inch along the upper, lower,
and left sides of the page, and 1 1/Z inches along the right. This
resets the binding margin to the right side of the page. 1f the
reserved word CENTER is used as the parameter, the subplot area will
be centered on the page with 1 inch margins on all four sides.

The page number parameter can be either an integer -ralue, a real
vaiue, or a character string. If the integer ~value 0 is wused, no
page number will be printed. In the case of a character string, a
maximum of twenty characters are allowed. I{ more than twentv
characters are used, a warning will be 1issued, and onlv the first
twenty will be printed.

The last parameter, the page location, specifies anv of six
positions on the page the page number is to be printed. I£ the
reserved word TOP is used as the parameter, the page number will be
centered and printed at the top of the page, 1/2 inch from the edge.
If TOP 1is preceded by the reserved word LEFT, the number will be
printed at the left top edge, beginning directly above the left
margin of the page (1 1/2 inches from the left edge for .eft binding
margins, 1 inch from the left edge for right binding margins or
centered). If TOP 1is preceded by the reserved word RIGHT, the number
will be printed at the right top edge, ending directly above the
right margin.

For pages that are not CENTERed (that have a binding margind ,

RS

AD=A100 814 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OM SCHOO=-ETC F/6 9/2
ASGOL~AN ALGOL=STRUCTURED GRAPHICS ORIENTED LANGUAGE.(U)
MAR 81 J D HART

UNCLASSIFIED AFIT/GCS/MA/81M-2

2o 2
a0 A
LI

TOP may be preceded by omne of two other rescrved words: INSIDE or

OUTSIDE. 1If INSIDE TOP is wused, the page number will be printed on
the inside of the page, either beginning or ending directly above the
binding margin, depending on whether the page has a left binding
margin or a right binding margin respectively. 1f OUTSIDE TOP is
used, the number will be printed directly opposite of the binding
margin.

If the reserved word BOTTOM is wused as the page location
parameter, the page number will be centered at the bottom of the
page, 1/2 inch above the lower edge. The reserved words LEFT,
RIGHT, INSIDE, and OUTSIDE also can be used in the same manner as in
“TOP.

Figure 19 1llustrates two ways pages can be defined. In the
first page, VERT SET, the page format is vertical, the subplot area
is centered on the page, and the page is not numbered. In HORIZ_SET,
the page format is horizontal, a binding margin 1is defined on the

left side of the page, and A-5 is printed at the top center of the

page.

86

Y S

SECTION example

PAGE vert_set (VERTICAL,center,0,right bottom)

END PAGE vert_set
PAGE horiz_set (HORIZONTAL,left reset,”a-5",top)

END PAGE horiz_set
END SECTION example

FIGURE 19 Page Examples

Often, it 1s necessary to draw several graphs, or to

mix graphs

and text, on a single page. To give this capability,

subtask can be subdivided into page segment subtasks.

segment subtask begins with the reserved word segment, followed by a

unique identifier (to define the name of the segment) and

parameter list. The segment ends with the reserved words END

SEGMENT, and just as in section and page subtasks,

followed by the name of the segment.

The segment parameter list is a list of four integer

values, each followed by the reserved word INCH or

varameter is separated by a comma and the complete parameter

87

S

enclosed in parentheses. These four parameters specify the size and
location of the segment within the physical page subplot 1in which
the subtask is to be performed.

The first parameter is the distance in the X direction from the
physical page origin to the start of the segment subplot area. (From
this point on, the X direction will refer to the dimension of the
page ¢ segment along the horizontal and the Y direction along the
vertical dimension of the page or segment.) The second parameter is
the distance in the X direction from the physical page origin to the
end of the segment subplot area.

The third parameter is the distance in the Y direction from the
‘thvsical page origin to the start of the segment subploé area. And
the fourth parameter is the distance in the Y direction to the end of
the segment subplot area.

These distances are specified by either integer or real values
and are 1in inches. Several precautions should be considered in
defining the segment subplot area. First, the values of the second
and fourth parameters must be greater than the values of the first
and third parameters respectively. This should seem reasonable since
the end of the subplot area cannot be defined to be before the
beginning. Second, none of the four oparameters values can lie
outside of the physical page, and for this reason, none of the four
parameters can have negative values.

As an example of the structuring of a program as discussed so
far, consider a single page task program that creates two graphs

drawn side by side in the upper half of the page, leaving the lower

88

half i{s to be reserved for a text description of the graphs. The
block structuring of this program 1s shown in figure 20. The reader
should study this structuring before continuing on to the next

subsection.

PROGRAM example_1l

PAGE sampledraw(VERTICAL,CENTER,"sample" ,TOP)

SEGMENT graphl (0 INCHES,4.25 INCHES,
5.5 INCHES, 11 INCHES)

GRAPH
END SEGMENT graphl
SEGMENT graph2(4.25 INCHES,8.5 INCHES,
5.5 INCHES, 11 INCHES)

GRAPH
END SEGMENT graph2
SEGMENT texter (0 INCHES,8.5 INCHES,0 INCHES,5.5 INCHES)

TEXT
END SEGMENT texter

END PAGE sampledraw
END PROGRAM example_1 .

FIGURE 20 Segment Examples

In the above program listing, EXAMPLE_ 1 is the name of the
program, SAMPLEDRAW is the name of the page, and GRAPHl, GRAPH2, and
TEXTER are segment names. The page format is vertical with a 1l

inch margin on all sides. The string SAMPLE is the page number and

89

is printed at the center top of the page. The GRAPH] subplot area is
the upper 1left quarter of the page; GRAPH2's subplot area 1is the
upper right quarter of the page; and TEXTER ‘s subplot area 1is the
lower half of the page.

The reserved words GRAPH and TEXT are used in this example to
represent the points at which these instructions occur. The actual
use of these instructions will be discussed later in this section.

Structure Commands:

In this section, two structure commands will be presented.
These instructions are only allowed within a page or page segment
subtask .

i The margin instruction begins with the reserved word MARGIN, and
may be followed by two parameter values separated by a comma and
enclosed in parentheses. These parameter values are integer or real
values followed by the reserved word INCH or INCHES. These
parameters reset the subplot area by defining the size of the margin
for both the X and the Y domains respectively. Figure 21 shows an
example of this instruction. 1In this figure, the margin instruction
redefines the physical origin, which was previous to the margin
instruction, at 1 4{inch in the X direction and 1 inch 4in the Y
direction, to be 2.5 inches and 3 inches respectively. These values
were obtained by adding the margin values (1.5,2) to the existing
physical origin (1,1). The margin instruction alsc redefines the
subplot area, which was 6 inches vertically and 9 inches horizontally
prior to the margin instruction (remember that VERTICAL defines the

page size to be (8.5,11) and RIGAT RESET uses a2 1.5 41nch binding

90

margin and a 1 inch grace margin), to be 3 inches (6 - (1.5 x 2)) and

5 inches (9 - (2 x 2)).

PAGE example 2(VERTICAL,RIGHT RESET, . . .
MARGIN(1.5 INCH,2 INCH)

FIGURE 21 Margin With Parameters

If the parameters are not specified (i.e. Only the reserved word

MARSIN 1is used), a default value of 5% of the subplot area dimension

“is used for both directivns. In figure 22, the margin instruction

w11 produce default values of .3 inches (6 times .05) in the X

direction and .45 inches (9 times .05) in the Y direction.

H

PAGE example_2(VERTICAL,RIGHT RESET, . . .
MARGIN

FIGURE 22 Margin Without Parzmeters

Special precautions should be made to insure that the margin

instruction does not redefine one or both 2f the subplot dimensions

to be 1less than zero. 1f so, errors will be generated. A simple

91

arithmetic check can be made to insure this does not happen. The X
dimension must be greater than twice the X wvalue prior to the
instruction and the Y dimension must be greater than twice the Y
value. Since the default values use a percentage of the subplot
area, errors should not result unless too many margin instructions
are made within a subtask.

The margin instruction also resets the physical origin of the

subtask. Although figure 23 may look harmless, it will produce
errors since after the margin instruction, the subplot area
dimensions are 3 inches (6 - (2 x 1.5)) and 5 inches (9 - (2 x 2))
and the second and fourth parameters of the segment block are out of

“the page bounds!

PAGE example_3(VERTICAL,RIGHT RESET, . . .
MARGIN(1.5 INCH,2 INCH)
SEGMENT (0 INCH,3.5 INCH,2 INCH,6 INCH)

FIGURE 23 Margin Error Example
The frame instruction 1is used to draw a physical frame around
the defined subplot area of the subtask. It begins with the reserved
word FRAME and may be followed by an integer value enclosed in
parentheses. This integer value represents the thickness of the
frame to be drawn. If the parameter is not specified (i.e. Only the
reserved word FRAME is used), a default value of a single 1line is

used. The integer value in the parameter cannot exceed 25. If a

92

thickness greater than 25 1lines is desired, consecutive frame

instructions can be used.

Like the margin instruction, the frame instruction affects the
physical origin and subplot area of the subtask, except on a much
smaller scale. The physical origin 1s redefined by 1/100th of an
inch for every 1line drawn, and consequently, the subplot area is
redefined to be 2/100th of an inch less in both dimensions for every
line drawn. For example,

FRAME (25)

will produce a frame 1/4 of an inch (25 times 1/100) thick; the
physical origin will be redefined as having .25 inches added to both
“directions, and the subplot area will be Ott>.5 inches less in both
dimension lengths.

Graphics Instructions:

Once a page or page segment subtask has been defined and the
margin and frame, if desired, are specified, the system is ready to
draw the graphics for the subtask. There are three basic types of
graphics that are avallable: 1lines and arrows, graphs, and text.
For each subtask, only one of these three can be used. In other
words, these basic types cannot be mixed within a subtask. However,
if a combination of these types within a page or segment area is
desired, the area can be defined 4in several page segment subtasks.
For example, 1f text is to be drawn along with a graph on a page

called EXAMPLE_3, the format may be as shown in figure 24.

93

il stetbeidtunssiinetsinii,

e

PAGE example_3(VERTICAL,LEFT RESET, . . .
SEGMENT part_1(0 INCH,6 INCH,0 INCH,9 INCH)

.

graph(. . .
END SEGMENT part_l
SEGMENT part_2(0 INCH,6 INCH,0 INCH,9 INCH)

TEXT(« « &«
END SEGMENT part_2
END PAGE example_3

FIGURE 24 Text and Graph Combination
In this example, note that both page segment subtasks called
PART 1 and PART_2 define the dimensions to be that of the full page.
Also, no margin or frame was defined at the head of the page, since
these can be defined within the segment subtasks.

Line and Arrow Instructions:

A sequence of straight lines can be drawn anvwhere within a page
or page segment subtask by a series of 1line instructions. A line
instruction begins with the reserved words DRAW LINE followed by four
parameters enclosed in parentheses. The 1instruction’s first two
parameters are the X and Y coordinates of the starting 1location of
the line specified in inches from the physical origin of the subtask.
The third and fourth parameters are the X and Y coordinates of the
ending location of the line from the physical origin of the subtask.
It is insignificant which end of the line is specified first, as long

as both coordinate points 1lie within the range of the subtask’s

94

dimension. 1If a point lies outside of the subplot area, the line is

clipped at the subplot edge. Figure 25 shows the wuse of this
instruction. In this exemple, the page is defined to be centered and
horizontal, defining the dimensions of the page to be 9 inches by 6
1/2 1inches in the X and Y direction respectively. The margin
instruction then redefines the X direction to be the same as the Y
(6.5 inches) by the formula ((9 - 2.5) divided by 2). Note that the
Y dimension is not changed by passing 0 INCHES as the parameter. The
line instructions are then used to draw a diamond shaped box within

the subtask.

PAGE example &4 (YORIZONTAL,CENTER, . . .
MARGIN (1.25 INCHES,0 INCHES)
DRAW LINE (0 INCH, 3.25 INCH,

3.25 INCH, O INCH)
DRAW LINE (3.25 INCH, O INCH,
6.5 INCH, 3.25 INCH)
DRAW LINE (6.5 INCH, 3.25 INCH,
3.25 INCH, 6.5 INCH)
DRAW LINE (3.25 INCH, 6.5 INCH,
0 INCH, 3.25 INCH)
END PAGE example 4

FIGURE 25 Line Instruction
Arrows are drawn in a similar fashion. 1In fact, the two can be
mixed in any sequence. An arrow instruction begins with the reserved
words DRAW ARROW, followed bv an integer value representing the arrow
stvyle, and four parameters enclosed in parentheses. The four

parameters are the coordinates of the starting and ending locations

95

of the arrow in the same form as in the LINE instruction, except that
the direction the arrow is drawn is significant. Unless the
direction of the arrow heads is specified to point in both directions
(see the description of the integer value below), the arrow head 1is
drawn to the end location of the arrow (the ¢third and fourth
parameter location).

The integer value in the instruction is a two digit integer used
to describe the arrow style. The first, a digit between 0 and 3,
describes the form of the arrow head. The second digit, also between
0 and 3, defines the location of the arrow head. Figure 26 shows the
forms and locations of arrow heads. Note that if the second digit is
"0, the arrow has no head and this reduces to a simple line with the

same parameters.

Forms: 0 s0lid head E
1 white head —>
2 open head >
3 closed head £

Locations: 0 none
1 end point >
2 both points - >
3 both toward end > —

FIGURE 26 Arrow Forms and Locations

Figure 27 gives an example of the wuse of arrows and lines
combined. The page format and draw instructions are the same as

those in figure 25. Arrow instructions have been added between line

96

instructions to show that the scguence order is unimportant.

28 shows the result of this page subtask.

PAGE example_4 (HORIZONTAL,CENTER, . . .
MARGIN(1.25 INCHES,0 INCH)

DRAW
DRAW
DRAW

DRAW
DRAW

DRAW
DRAW

LINE(O INCH,3.25 INCH,3.25 INCH,0 INCH)
LINE(3.25 INCH,0 INCH,6.5 INCH,3.25 INCH)
ARROW 01(3.25 INCH,3.25 INCH,

0 INCH,6.5 INCH)
ARROW 32(0 INCH, 6.5 INCH,

6.5 INCH, 6.5 INCH)
LINE(6.5 INCH,3.25 INCH,3.25 INCH,6.5 INCH)
ARROW 03(0 INCH,0 INCH,3.25 INCH,6.5 INCH)
LINE(3.25 INCH,6.5 INCH,0 INCH,3.25 INCH

END PAGE example_4&

FIGURE 27 Line and Arrow Instructions

97

Figure

page border

physical origin

after MARGIN

FIGURE 28 Lines and Arrows Example

Graph Instruction:

98

The graph instruction is a general purpose instruction used to
draw any of a number of types of graphs. Only the basic types:
linear, bar, and pie graphs will be discussed in this section. Other
types of graphs will be discussed in the next section. At this
point, the description of this instruction will be limited ¢to these
basic types.

Before discussing the graph instruction, there are three types
of instructions, used to prepare the subplot area for a graph, that
need to be described. These instructions must be placed immediately
prior to the actual graph instruction. However, not all of these
instructions are necessary to draw graphs but can be used to enhance
“the style of the graph.

The first type of 1nstruction defines the X and Y axes of a
graph. For linear and bar graphs, both axes must be defined. If
these instructions are inserted prior to a ple graph, they will have
no effect. The definition of an axis is given in five parts: the
title of the axis, the type of axis, the minimum and maximum values,
a step increment called delta, and the number of tick marks between
each step.

The title of the axis is a wuser defined character string
(remember a character string is enclosed in double quotations) of 80
characters or less. For the X axis, the character string is printed
directly below the axis and centered within the subplot area. For
the Y axis, the string 1s printed 90 degrees from the horizontal,
directly to the left of the Y axis, and centered within the subplot

area.

99

——-———-—-_--_-——_7

There are three types of axes available to the user: LINEAR, LOG
or LOGARITHMIC, and MONTH. For a linear axis, the minimum and
maximum values may be integer or real and represent the actual values
of the end points of the axis. TFor a logarithmic axis, the minumum
and maximum values are integers representing the exponent values of
the end points (10 to the power of). For month axes, the minimum and
maximum values are the first three letters of the month (i.e. MAY,
JUN, JUL, and AUG) for the end points of the axis.

The delta 1is an integer value representing the number of
incremental steps of the axis starting with 1 at the minimum value.
When the axes are drawn in the subplot area, the values at each step
“will be drawn, as well as the wminimum and maximum values of the axes.
In defining the X axis of a linear or bar graph, the delta also
represents the number of points to be plotted within the graph.

Examples of the use of the delta are shown in figures 29 and 30.

100

—

X AXIS =("x axisl",MONTH,DEC,DEC, 5,2)
Y AXIS =("y axisl",LINEAR, 0,100,6,0)
GRAPH (LINEAR, . . .

0.0 up.o

SUBPLOT
AREA

Y AXISL

q.ﬂ

0.0 2.0

v Bd Y T 1

EC MR JN sep CEC
X AXISI

FIGURE 29 Linear Axes Definition

101

p————————————

Y AXIS =("log",L0G,~-1,7,5,1)
X AXIS =("linear",LINEAR, -100,100,3,0)
GRAPH(BAR, . « .

5
[]
S
°
°
SUBPLOT o
AREA g~
=]
®
)
- o
- -1%.8 .0 me
LINERR

FIGURE 30 Bar Axes Definitoms

The number of tick marks is an integer value that represents the
number of marks placed evenly between each incremental step of the
axis. Ticks do not effect the plotting of points on the graph, but
are used for plotting enhancements. If tick marks are wused, the
values at the tick marks are not printed.

To define the X axis, the instruction is of the form:

X AXIS =(title,type,min,max,delta,ticks)
where title is the character string name of the axis; type is ome of
the reserved words: LINEAR, LOG, LOGARITHMIC, or MONTH; min and max
are: integer or real values for LINEAR type axes, integer values for

LOG or LOGARITHMIC type axes, or the first three letters of a month

102

for MONTH type axes; delta and ticks are integer values. The
reserved words LOG is a short form of LOGARITHMIC.

To define the Y axis, the instruction is of the form:

Y AXIS =(title,type,min,max,delta,ticks)

where each of the parameters are the same as 1in the X axis
definition above.

In figure 29, the instructions set up the axes system within
the subplot area for a linear graph. 1In figure 30, the instructions
set up the axes systems within the subplot area for a bar graph. For
bar graphs, the minimum and wmaximum points of the X axis are spaced
evenly within the axis to prevent bunching~up of the bars as they are
-being drawn at these points. Note also that it is not important
which axis is defined first.

The second type of instruction, the legend instruction, is
optional and may be used with any of the graph types. In a linear
graph, a legend is used to identify the types of curve markers to
each plot of the graph. 1In a bar graph, a legend identifies the
shade styles to each bar plot drawn. In a pie graph, the 1legend is
used to identify each of cthe pie sections to user defined character
strings.

The legend instruction may be specified in any omne of four
various forms. These are:

LEGEND (title list)
LEGEND (location,title list)
LEGEND title (title list)

LEGEND title (location,title list)

103

.- _.c.‘-“—‘

O S

The title 1list, used in all four variations, 1s the 1list of
character strings (enclosed in double quotations), separated by
coumas. The length of these strings must be 20 characters or less.
If the length is greater than 20, only the first 20 characters will

be wused. These charecter strings are the user defined strings

identifying the plots on the graph. This sequence of character
strings must be in the same order as the curves or bar plots being
plotted on the graph.

The location parameter, used 1in the second and fourth 1
variations, specifies the positioning of the legend box within the i
subplot area of a linear or bar graph. Any of the reserved word
sets: LEFT TOP, TOF, RIGHT TOP, LEFT BOTTOM, BOTTOM, or RIGHT BOTTOM
may be used as this parameter. If the location of the legend 1is not
specified (in the first and third variations), the default is RIGHT 1
BOTTOM. It is important to remember that points will not be plotted
within the 1legend box 1if a legend 1is used; therefore, precautions
must be made in positioning the legend box within the subplot area.

The title in the third and fourth variations after the reserved
word LEGEND is a character string of 20 characters or less used to
redefine the name of the legend. By default, "LEGEND" will be
printed at the top of the legend box.

For a pie graph, 1if either the optional 1legend title or the

location is used within the legend instruction, they will be ignored

since the character strings are placed within the corresponding pie

segments.

The third preparation instruction, the grid instruction, is also

104

optional and may be used with either the linear or bar graph. The
grid instruction 1is used to draw solid or dotted lines across the
subplot area along either the X axis, the Y axis, or both. The grid
instruction begins with the reserved word GRID followed by two
integer values enclosed in parentheses and separated by a comma. The
two integer values represent the number of lines to be drawn per
incremental step of the axis: the first for the X axis, the second
for the Y axis. If the value is 0, no lines will be drawn. If the
value 1is 1, a 1line is drawn at every step. 1f the values are
positive, solid lines will be drawn. To draw dotted 1lines, the
values must be negative (i.e. =2 will draw two dotted lines per
Ancremental step of the axis).

Once the axes (for 1linear and bar graphs) and the optional
legend and grid instructions have been defined, the subplot area 1s
ready to plot the points on the graph. The graph dinstruction is
specified in the form:

GRAPH title (graph type,number of plots,values)

The title is an optional user defined character string of length
20 characters or less. The title is printed at the top of the graph
and centered across the subplot area. The graph type is one of the
reserved words LINEAR, BAR, or PIE used to specify which basic tvpe
of graph is to be drawn. The other types of graphs will be discussed
in the next section. The number of plots is an integer wvalue that
specifies the number of plots to be drawn on the linear or bar graph;
for pie graphs, this value represents the number of pie sections in

the graph.

Since the use of the values supplied in the graph instruction
varies with the type of graph being drawn, this description is
subdivided into two parts: pie graphs, and linear and bar graphs. At
present, the decription of this parameter is limited to direct input
of the values. In the next section, it will be shown how these
values can be passed into the instruction by an array identifier
containing the values of the plotting points.

For direct input of the values, this parameter begins with the
reserved word DATA followed by the list of values enclosed in slash
marks ("/") and separated by commas. These values may be of type

integer or real and may even be intermixed.

- Pie Graphs:

The values used in a pie graph are the percentages (%) of the
pie sections. The sum of these percentages must be less than or
equal to 100%. If the sum is less than 100%, the remaining section
of the pie will have the character string "OTHERS" inserted. Figure
31 shows an example pie graph from a program, using the legend

instruction. Figure 32 shows the results of this page subtask.

106

PROGRAM examplepie
PAGE drawpie(VERTICAL,CENTER,5,RIGHT TOP)
MARGIN(1 INCH,1 INCH)

FRAME
LEGEND ("cars", /* automobiles */
"trucks", /* 2 and 4 wheel */
"vans") /* customized */
GRAPH "automobile sales"
(PIE, /* define pie graph */
3, /* # of sections */

DATA / 47.6, /* car sales */
32.4, /* truck sales */
15/) /* van sales */
END PAGE drawpie

END PROGRAM examplepie.

FIGURE 31 Pie Graph Example

AUTOMOBILE SALES

ey

redefined margin

FIGURE 32 Pie Graph Example

Linear and Bar Graphs:

In 1linear and bar graphs, the wvalues passed by the graph

107

instruction are the Y coordinates for each plotting point of the
graph. Remember that the X coordinates are specified by the delta
declared in the X axis of the graph. Therefore, the first value is
the Y coordinate of the first plot; the X coordinate 1s at the
minimum point of the X axis. The second value is the Y coordinate of
the second point on the first plot; the X coordinate is at the first
incremental step of the X axis. The sequence continues as shown in
table 2.

In general, if the number of plots specified in the graph
instruction is an integer value m, and if the delta of the X axis is
specified as an integer value n, then the values defined in the graph
-instruction are the Y coordinates of the plots and the X coordinates

are those shown in table 2.

TABLE 2
Direct Data Graph Coordinates
VALUE NUMBER X COORDINATES
1 ! minimum,lst plot
2 ! lst delta,lst plot
. ‘ .
n ‘ maximum,lst plot
i n+l ! minimum,2nd plot
E 2n maximum,2nd plot
; 2n+1 : minimum,3rd plot
I . i .
i mn ‘ maximum,nth plot |

As can be seen 1in table 2, the number of values used for
plotting points is always m times n. If the number of values
supplied 1in the graph instruction is 1less than this awmount, the

systec will use the value of 0 for the remaining Y coordinates. If

108

-—-—_—————__—_.“

i st i e s

the number of values is greater, then all values after the MNth will

be ignored. Figure 33 and 34 show the use of the linear and bar
graphs by plotting the same values for each. The value 30.8:5
represents the use of a feature avallable in direct input and has the

same meaning as 36.8, 36.8, 36.8, 36.8, 36.8 .

PROGRAM exampleb_1
PAGE drawb_1(HORIZONTAL,LEFT RESET,0,TOP)
SEGMENT draw_bar (0 INCH, 4.25 INCH, /* x dimen */
0 INCH, 6.5 INCH) /* y dimen */
FRAME /* enclose plot */
/* scaling of axes within the subplot area
will occur automatically */

X AXIS =("hours", /* hours of the day */
0,24, /* min and max */
5, /* # of plots */
- 0) /* no ticks */
Y AXIS =("decibels", /* noise level *
0,120, /* 0-120 Db */
7, /* every 20 Db */
0) /* no ticks */
LEGEND "freeway" /* title legend */
(LEFT ToOP, /* location */

"weekdays",
"weekends",
"average") /* note order */
GRAPH (BAR, 3,
DATA/10,70,56,87,10, /* weekdays */
©,37,43,40,9, /* weekends */
36.8:5/) /* average */
END SEGMENT draw_bar
SEGMENT draw_lin
(4.25 INCH,8.5 IKCH, /* x dimen */
0 INCH,6.5 INCH) /* y dimen */
X AXIS =("i...-<",0,24,5,5)
Y AXIS =("d: ihels™,0,120,7,1)
GRAPH '"nmois. .ovel'(LINEAR,3,
DATA /10,70,56,87,10,
6,37,43,40,9,
36.8:5 /)
END SEGMENT draw lin
END PAGE drawb_1
END PROGRAM exampleb 1.

FIGI'RE 33 Bar and Linear Graph Example

109

SANRAMRRRN
LI LIV T -2
[T 772 LT LLL e L L Ll

[=
I

[I T
(Ll e L L L L8 2L 2
AR

ISRNSSSEREN])
2 L b Ll L 2L

ig.'-ﬁ
T AJ

r!’
-

FIGURE 34 Bar and Linear Graph Exampl-:

110

EEERE T L

Text Instruction:

The text instruction is wused to print actual character strings
in the page or segment subtask once the subplot area has been
defined. All text instructions are of the form:

TEXT(text type text style,character string,
start,length,height)

The text type is the justification of the character string to be
printed, determined by one of the reserved word sets: LEFT JUSTIFIED,
RIGHT JUSTIFIED, L-R JUSTIFIED, TOP CENTERED, BOTTOM CENTERED, or
CENTERED. With the reserved words LEFT JUSTIFIED, the character
string will be printed in comnsecutive lines, starting at the top of
the subplot area with left margin justification. The breaking point
at the end of each line is determined by the number of words that can
be packed per line. However, a string can be continued to the next
line by inserting either "#nl" (new 1line) or "#np" (new paragraph)
within the character string at the point the new line is to begin.
"#nl" and "#np" are bypassed and will not ©be printed. "#nl" will
cause the next line to be printed starting at the left edge of the
subplot area "#np" will cause the next 1line to begin with a 15%
indentation of the X dimension in the subplot area.

With the reserved words RIGHT JUSTIFIED, the character string
will be printed with right margin justification. Breaking pcint of
each line 1s determined in the same manner as in left margin
justification, except that both "#nl" and "#np'" are 1interpreted as
"#nl". There is no paragraph indention for right justified text.

With the reserved words L-R JUSTIFIED as the text tvpe, the

justification is both left and right Jjustified. At each breaking
point of a line not caused by "#nl" and "#np'", the spacing between
each character is set so that the 1line ends at the right margin.
"#nl" and "#np" breaking is handled in the same fashion as left
justified.

The spacing between each 1line is dependent upon the character
height specified in the text instruction (see below); therefore, in
the case that the number of lines times the character height plus the
line spacing is 1less than the Y dimension of the subplot area, the
lower portion of the subplot area will remain empty. In other words,
the spacing between each 1line will not be adjusted so that the
<omplete subtask is used to draw the text.

If the character string is too long to be printed within the
subplot area, only those characters that fit into the area will be
printed. In the next section, it will be shown how a string
identifier can be used to continue a character string from one
subtask to the next.

If the text type is CENTERED, each line of the string is
centered across the subplot area and evenly spaced so that the first
line is at the top of the subplot area and the last is at the bottom.
In all CENTERED text types, '"#nl'" and "#np" act only as breaking
points of the lines. Breaking points must occur with one of these
two symbol sets for CENTERED text.

For the TOP CENTERED text type, each line is centered across
the subplot area starting at the top. Spacing between each 1line is

treated in the same manner as justified text: it is independent of

AT Dttt o .- st sceminbaenidnei

the number of lines. For the BOTTOM CENTERED text type, the last

line is printed just above the lower edge of the subplot area. Like
TOP CENTERED, spacing between lines is treated in the same manner as
justified text.

The text style is the type of character style to be used in
drawing the character string. These may be any of the styles
specified by DISSPLA (ref 4). At this point, only the default style
will be used by inserting the reserved word SIMPLE. The other styles
will be discussed in the next section.

The second parameter is the character string to be printed.

Remember that all strings are enclosed in double quotationms.
- Start is an integer value used as a pointer into the character
string as the starting location. If the value is 1, the characters
will be printed starting at the beginning of the string. This value
cannot be greater than the length of the character string.

The length 1s an integer value or the reserved word CONTINUE
used to determine the number of characters to be printed. If an
integer value is used, only the number of characters specified will
be printed. If the value is greater than the length of the string
from the point specified by start, or if the reserved word CONTINUE
is used, the string will be printed until either the end of string is
reached or until the subplot area is filled. This eliminates the
task of having to count the number of characters in a string.

One point should be made about using start and 1length. The
starting and ending points in a string should not be within the

locations where "#nl" and "#np" are found, since this will cause the

system to bypass these commands.

113

i dbecidioituiio Ai-IlllIII-I--N---n-n-HI“

Height is an integer or real value followed by the reserved word

INCH or INCHES and specifies the character height to be wused in

printing the text.
Figure 35 and 36 show the use of left and right justified and

top centered and centered text styles.

114

PAGE text_examp(VERTICAL,center,0,top)
SEGMENT 1_just(0.00 INCH,4.50 INCH,
3.25 INCH,9.00 INCH)
FRAME
TEXT(LEFT JUSTIFIED SIMPLE,
"this is#nlan examplefnl"&
"of justifiedfnltext",
1,CONTINUE, . 50 INCHES)
END SEGMENT 1_just
SEGMENT r_just (3.25 INCH, 4.5 INCH,
6.50 INCH,9.00 INCH)
FRAME
TEXT(RIGHT JUSTIFIED SIMPLE,
“this is#nlan examplefnl"&
"of justified#nl text",
1,CONTINUE, .50 INCHES)
END SEGMENT r_just
SEGMENT t_cent(0.00 INCH,0.00 INCH,
3.25 INCH, 4.5 INCH)
FRAME
TEXT(TOP CENTERED SIMPLE,
"top#npcentered”,
1,100,.25 INCHES)
END SEGMENT t_cent
SEGMENT cent(3.25 INCH,0.00 INCH,
6.50 INCH,4.50 INCH)
FRAME
TEXT (CENTERED SIMPLE,
"this part not printed.”&
"centeredfnltext",
23,17,.25 INCHES)
END SEGMENT cent
END PAGE text_examp

FIGURE 35 Text Example

115

Y

THIS IS THIS IS
AN EXAMPLE AN EXHMF’L_E.'T
DF JUSTIFIED OF JUSTIFIED
TEXT TEXT
TGP
CENTERED CENTERED
TEXT

FIGURE 36 Text Example

116

————

I1. PROGRAM ENHANCEMENT

Constants and Variables:

Up to this point, all programs have been shown to be written
using literals as the basis of computation. The problem with this
type of program implementation is that no matter how many times the
program is executed, the results will always be the same. To change
the output results, the user must edit the input program and change
each of the literals. For programs that are even several page
subtasks in length, this problem becomes almost impossible, since the
user must understand how the changes will affect the output. To make
programming more versatile, the programmer can assign a value or a
set of wvalues to a user defined identifier and then access these
values through the identifier name. The same restrictions apply to
value identifiers as those that apply to identifiers used in naming
subtasks:

1) the length cannot exceed 10 characters,

2) the first character must be a letter,

3) only letters, digits, and the underscore are allowed,
4) an identifier caunnot be a reserved word.

The first encounter of a value identifier is always within the
declaration blocks of a program, where the identifier is declared to
be either a CONSTANT or VARIABLE. As these names iwmply, once a
constant is assigned a value (within the declaration block), the
value cannot be changed. However, the values of variables can change
during the execution of & program.

Declarations can occur only at the head of a subtask (PROGRAM,

SECTION, PAGE, or SEGMENT). An exception to this rule applies to the
use of conditional statements. This topic will be discussed in
section 1IV. A declaration block begins with the word DECLARE
followed by the constant declaration set, the variable declaration
set, and ends with the words END DECLARE. The constant declaration
set begins with the word CONSTANT followed by a set of constant
identifier assignments of the form:
identifier = value

The value may be integer, real, boolean, or character string.
The variable declaration set begins with the word VARIABLE followed
by a set of variable declarations of the form:

- identifier list : type

an identifier 1list can be a list of from 1 to 10 identifiers
separated by commas. The type denotes the type assignment to the
identifier list.

It is not required that both constants and variables be declared
within every declaration block. However, when both occur, the
constant declaration set must occur before the variable declaration
set.

An identifier can be assigned one of seven types: INTEGER, REAL,
BOOLEAN, CHARACTER, STRING, AXIS, and UNIT. Once an identifier has
been assigned a type, it cannot be changed. It is important to
recognize the difference between assigning a type and assigning a
value to a variable. The type specifies the type of value that the
identifier will contain; therefore, while a wvariable may be

reassigned different values, the type will always remain the same.

118

Since integers, reals, and booleans were discussed in the
previous section, further description of these types will be deferred
until the subsection on expressions. The use of the type CHARACTER
for this version of the language is limited to 1logic comparisons
only. At this point, 1t is enough to note that characters are
defined to be character strings of length 1. For example, "5"
represents the character value 5. This should not be confused with
the integer value 5. The two are not equivalent.

When defining an identifier to be of type STRING, it is meant
that the value the identifier will contain 1is a character string.
The maximum length of the character string is defined by an integer
~value enclosed in parentheses following the word STRING in the
declaration. Like the type assigned to a variable, the length of
string types cannot change.

Axis variables, when declared, are assigned a record structure
of values that are defined to be the five parts of an axis: the
title, the type, the minimum and maximum points, the delta, and the
ticks. Like the description previously stated for these parts, each
axis variable record component has the same characteristics. The
defining and handling of axis variables will be discussed later in
the subsection on Assignment Instructions.

Unit variables are used as a method of scaling distances within
a subplot area or as a conversion to any other system of measurement
the user desires. As an example of scaling, the user could define
the identifier MILES to be of type UNIT and then later, in an

assignment instruction (see below), assign to it the value: 10

119

INCHES. At any point within the subtask after the assignment has

been made, the user can refer to distances in units of MILES and the
systen will convert the scaling factor to INCH units (i.e. .5 MILES
is converted to 5 INCHES). For example, the user could define the
identifier CENTIMETER to be of type UNIT, assign the wvalue (1/2.54)
INCHES, and then refer to distance units 1in terms of centimeter.
The user could then define MILLIMETER to be of type UNIT, and assign
the value .1 CENTIMETER after the centimeter value assignment has
been made.

An identifier of any of the four basic types INTEGER, REAL,
BOOLEAN, and CHARACTER may also be declared as an arrey. An array is
-an ordered collection of values contained under a common identifier
and consequently have the same type associated with that identifier.
Arrays are used to store interrelated values together. A variable
array declaration is of the form:

identifier list : ARRAY[index] OF basic type
where the basic type 1is one of the four reserved words mentioned
above. The index 1is a 1list of one or more integer values that
represent the sizes of the variable’s dimensionms. Each dimension
value is called a subscript. At present, the system is limited to

three dimensions.

120

1 PROGRAM ex_declare

2 DECLARE

3 CONSTANT pi=3.1415926

4 END DECLARE

12 SECTION sect_dec

13 DECLARE

14 VARIABLE

15 pager,index:INTEGER

16 flag:BOOLEAN /* test */
17 stack:ARRAY [2,2,10] OF REAL
18 xcharset, /* note how */
19 ycharset, /* each line */
20 xaxset, /* can be used */
21 yaxset: /* to define */
22 STRING (9)/* variables %/
2 END DECLARE
31 PAGE page_dec
32 DECLARE

33 CONSTANT
34 setup="time axis”
35 VARIABLE
36 cm,mm:UNIT

37 axis_drawl,
38 axis_draw2:AXIS
39 index:REAL
40 END declare
48 END PAGEPAGE_DEC

63 END SECTION sect_dec
64 END PROGRAM ex_declare.

FIGURE 37 Constant and Variable Declarations

Figure 37 shows an example of how constants and variables are
declared. In this example, each of the three subtasks are wused to
declare value identifiers. In the program subtask, only the constant
PI 1s declared (lines 2-4). Since the value 1is real, the type
assigned to the identifier PI 1is real. It is important to remember

that the difference between declaring Pl to be a constant with the

121

value 3.1415926, and declaring PI to be a real variable and assigning

this value to it in the program, is that constants cannot be changed.
In figure 37, the programmer may now access PI anywhere within the
program without worrying that the value this identifier contains may
not always be the standard value, as would be the case if PI were
declared to be a variable. Thus, it can be seen that the use of
constants should not be viewed as a8 restriction upon the user, but
provides a failsafe against redefining a value identifier.

In the SECT DEC section subtask, only variables are declared
(lines 13-23). In lines 18-22, it is shown that, while the structure
is still syntactically correct (see the varlable declaration form
specified above), the format is unrestricted. The declaration on
'ine 17 sets up a three-dimensional array of reals to be contained
within the identifier STACK.

Within the PAGE_DEC page subtask, both a constant and variables
have been declared. The identifier SETUP on line 34 is assigned a
character string of length 9. Just as for integer or real constants,
string constants may not be changed; consequently, the length also
remains constant.

Before continuirg to the description of arithmetic expressions,
several important notes concerning the activation of constants and
variables need to be discussed. Constants or variables become active
at the point they are declared, and become inactive when the
subtask that the constants and variables were declared within has
been exited. In figure 37, the constant SETUP and the variables

declared within PAGE_DEC, therefore, are local only to that

122

particular page subtask, and become inactive once line 48 has been
executed. Constants and variables can only be accessed while they
are active. The constant PI 1is a global constant since it is
declared at the head of the program and remains active until the last
line (64) is executed.

While not usually a good programming technique, the declaration
of 1INDEX (line 15) demonstrates an extension to activation of a
variable. Another variable INDEX was declared within PAGE_DEC (line
39). Within the page subtask, the SECT DEC INDEX becomes inactive
and unaccessible during the execution of PAGE DEC and the wvalue is
unaffected while the PAGE_DEC INDEX is active. On completion of the
page subtask (line 48), the PAGE_DEC INDEX becomes indefinitely
inactive and the SECT_DEC INDEX is returned to the active state until

the execution of line 63.

Arithmetic Expressions:

Expressions are used to compute results from a sequence of
arithmetic operatiomns. For this language, these operations are
implicitly performed in the standard format for algebraic
mathematics: left to right, proceeding according to specific rules of
precedence. Table 3 defines the order or precedence that operations
are performed. Lower order operations are performed first. In the
case of a sequence of operations that occur at the same level (i.e.
-5+43-1), the operations are performed left to right.

An operator is a word or symbol that defines the type of

operation to be performed upon the operand(s). An operand will either

be a resulting wvalue from a previous operation or one of the

primaries listed in table 4. Tables 3 and 4 also show the
restrictions on the type that each operand can be, and gives the
resulting type for each operation. Table 5 defines the type symbols
used in both tables.

Figure 38 illustrates the order of evaluation for an expression.
Although each of the operators and operands are written in the same
order, the use of the explicit evaluation '"()" from table & shows
the effect it has upon the precedence of evaluation. In the first
case, the expression is completely implicit, therefore the expression

becomes equivalent to:

((10/5)=(2%(3%*2)))+1

Explicit evaluations can be interpreted to mean: "If a left
parenthesis is encountered at the start of an operand, evaluate what
is within the parentheses and wuse this result as the operand of the
operation." Whether the internal operation (within the parentheses)
is a lower precedence than the external operation or not, the
internal operation is always evaluated first.

In all three cases, each of the primaries are integer literals
and each operation results in an integer value. In figure 39, the
same expressions are used except that several of the literals are now

reals to show that the value and type results wvary from those in

figure 38.

124

TABLE 3

PRECEDENCE OF OPERATIONS

LEVEL |OPERAND | OPERATOR | OPERAND | RESULT| OPERATION
1.1 R *% R R exponentiation
.2 R ** I R exponentiation
.3 I *% R R exponentiation
A I * % I +1 exponentiation
2.1 R * R R multiplication
o2 R * I R multiplication
.3 I * R R multiplication
o4 1 * I I multiplication
.5 R / R R division
.6 R / I R division
.7 1 / R R division
.8 1 / 1 I integer division
.9 I MOD I I modulus
.10 1 REM I 1 remainder
3.1 + I I unary plus
o2 -+ R R |unary plus
3 - I I unary minus
b - R R unary minus
<5 R + R R addition
6 R + I R addition
.7 I + R R addition
.8 1 + I I addition
.9 Cs + CS CS string concatenation
.10 R - R R subtraction
.11 R - I R subtraction
.12 1 - R R subtraction
.13 1 - I I subtraction
4.1 B AND B B conjunction
.2 B OR B B inclusive disjunc.
.3 B XOR B B exclusive disjunc.
5.1 BASIC < BASIC B compare l.t.
.2 BASIC <= BASIC B compare l.t.eq.
.3 BASIC = BASIC B compare eq.
od A /= A B compare not egq.
e5 BASIC = BASIC B compare g.t.eq.
.6 BASIC > BASIC B compare got-.

TABLE &

EXPRESSION PRIMARIES

OPERAND PARAMETER(S)|RESULT |OPERATION
1 variable [I 1ist] |I/R/B/C array variable
2 variable I1/R/B/C/S
3 constant I1/R/S
4 literals 1/R/B/CS
5 (expression) same |explicit evaluation
6 NOT (B) B logic inverter
7 SIN (R) R sine function(rad)
8 COS (R) R cosine function(rad)
9 TAN (R) R |tangent function(rad)
10 INV SIN (R) R inverse sine
11 INV COS (R) R inverse cosine
12 INV TAN (R) R inverse tangent
13 INTEGER (R) I convert R to I
14 FLOAT (1) R convert I to R
15 FRACTION (R) R return fraction of R
16 ABSOLUTE (I) 1 absolute value
17 ABSOLUTE (R) R absolute value
18 POINT (S) +I return pointer
19 LENGTH (S) +1 return string length
20 ORIGIN (X) +R return X origin
21 ORIGIN (Y) +R return Y origin
22 AREA (X) +R return X length
23 AREA (Y) +R return Y length
24 REFERENCE (s, Cs) +1 return reference pcint
25 STRING (1) CcS return CS of 1
26 STRING (R) Cs rerurn CS of R

126

TABLE 5

TYPE SYMBOLS

TYPE
A all type expressions excluding
axis and unit variables
B boolean expressions
BASIC|integer,real,boolean,or character
expressions
I integer expressions
+I |[positive integer result
R real expressions
+R |positive real result
cS CHARACTER string
S string identifier

127

(a) 10/5=2*3%*2+] (b) 10/(5=((2*3)**2+1))

JJ @@@
; Ofi@@
Ogﬁ

Q

(c) 10/(5=2))*3*%*(2+1)

FIGURE 38 Integer Expression Example

128

(b) 10./((5~(2%3)**2,))+1)

(a) 10./5-2%3%%2 41

-(2%3)**x24]1)

(¢) 10./(5

FIGURE 39 Real Expression Examples

Functions:

129

————

In table 4, the primaries from 1line 6 tc 26 are called
functions. Functions are used to perform a specific evaluation on
the parameter(s) passed. In most cases, the parameters may be any
expression as long &s the type resulting from the expression 1is of
the type indicared under PARAMETER(S) in table 4. Exceptions of the
use of expressions are where S denotes a string identifier, CS
denotes a character string, and where X and Y are used (lines 20-23).
Converts the result of an integer expression to type real. The value
of the integer parameter is actually not changed, but the type 1is
converted. For example, FLOAT(5) returns the value 5.0. FRACTION
returns the fractional portion of a real expression result;
-therefore, a real expression may be broken into its integer and
fraction by these two functions. ABSOLUTE returns the absolute value
of a real or integer expression result, but does not affect the type
(i.e. ABSOLUTE (5.3)=5.3 and ABSOLUTE(~10)=10).

The functions on lines 18-19 and 24-26 are string functions.
POINT returns the pointer to the character in the string identifier
immediately after the last character printed on the screen. This
function is specifically used to interact with the text instruction
when two or more pages or segments are needed to print a long string
of text. If the string identifier has not b«en used within a text
instruction, or if the complete <character string has been printed,
the value returned is 1. LENGTH returns the number of characters
assigned to a string identifier. This value may be different than
the length that the identifier was declared to be if the character
string assigned is shorter. For example, 1f the identifier in the

declaration:

130

store_strn:STRING(25)

is later assigned the character string ''mot long enough", then
LENGTH(store_strn) will return the value 1), not 25.
The function REFERENCE 1is used to locate a character string

within a string identifier by returning a pointer to the head of the

character string first encountered in the identifier. In the

example above, REFERENCE (store_strn, "en") returns the value 10. ‘
This function 1s often wused with the POINT function to locate

references to graphs within a character string so that these graphs

can be plotted near +heir references. An exaople of the use of these 1
functions will be given later. The STRING function is used to return 1
—the character string of an integer or real expression. This function
can be used in concat concatenation of character strings (defined as
character string addition). For example, ''the temperature is" +
string(48.60) + " degrees" produce: the string: "the temperature is
48.6 degrees".

The ORIGIN and AREA functions provide a method ot positioning
page segments at particular points on the page. ORIGIN(X), when used
in a page subtask or 1in defining a segment subrask, returns the
distance (in inches) in the X direction from the lower left phvsical
corn. of the page to the page physical origin. ORIGIN(Y) returns
the d.stance in the Y direction. This function is used to define the
lower left corner of a segment, when the position 1s to be
independent of the page physical origin. For example, figure 40
illustrates how a segment may be positioned exactly (2.5 INCHES,4.5

INCELS) from the lower 1left corner of the page no matter how the

131

margin and frame instructions affect the physical origin of the page.
One problem still remains with this illustration. If the segment
positions lie outside the page physical origin, errors will still
occur. The ORIGIN function, when used within a segment subtask, will
return the distance from the page physical origin from the segment
physical origin. These values, 1in later versions of this language,
will be used for user-defined windowing of objects within a page

segment.

PAGE seg_set_up(VERTICAL,center, + « »
MARGIN(« « &
- FRAME(s « « &
SEGMENT exact((2.5-ORIGIN(X)) INCEES,3 INCHES,
(4.5-ORIGIN(Y)) INCHES, 3 INCHES)

FIGURE 40 ORIGIN Function Example

AREA(X) returns the lengt* of the subplot area in the X
direction of the page or page segment, depending upon which subtask
the function 1is called in. In the previous section it was stated
that the position and size of each page subtask plot area mwmust be
calculated so that segment subplot points are mot out of the page
bounds. If the size of the page subplot area depends upon the
evaluation of expressions, the dimensions may not be calculated until
the program 1s executing. In figure 41, the page segments are
defined according to this function. The page subtask is evenly

divided into four equally-sized segments. Note that although the

132

e,

r * ——————————————

margin and frame instructions affect the sizes of the segments, the
expression values for the parameters of both cannot be evaluated

previous to the execution of the page subtask procedure.

PROGRAM area set
DECLARE VARIABLE
framsize,margsize:real
END DECLARE

PAGE not_set (HORIZONTAL, left reset, « + .
MARGIN (margsize)
FRAME (framsize)
SEGMENT set_up(O INCH, (area(x)2) INCH,
0 INCH, (area(y)2) INCH)

PO S

- END SEGMENT setup_l

albiiinetdbhe. I

FIGURE 41 AREA Function example

JPNS

Assignment Instructions:

Once a variable has been declared, and while the wvariable is
active, it can be assigned a value. The value of an assignment must
be of the same type as the type the variable was declared to be.
There are no other restrictions upon an assignment instruction. An
assignment may occur in one of two methods. The first type 1s an
explicit assignment instruction called a set instruction. The

formats for set instructions are as follows:

SET variable = expression
SET variable [array components] = expression

SET STRING string variable = expression

133

SET UNIT unit variable = expression unit identifier

SET AXIS axis variable = (title,type,min,max,delta,ticks)

The first is used for defining a variable of any of the basic
tvpes: INTEGER, REAL, BOOLEAN, and CHARACTER. The expression
evaluated must be of the same type as the variable. For character
variables, the expression may only be another character variable
previously defined, a single character in double quotations, or the
STRING function where the expression parameter is evaluated to be an
integer between 0 and 9. No other restrictions apply. Expressions
may be of any length.

The second set instruction is wused for defining an array
.variable- The array components enclosed in brackets is a 1list of
integer values that specify which component is being assigned. The
number of integer values must be the same as the number of dimensions
of the variable, and each integer value must be less than or equal to
the corresponding simension in the declaration. All variables that
have been declared as arrays must have specified array components in
a set instruction.

The third instruction is used to define a string variable. The
expression may be either another string variable or constant, a
character string, the STRING function, or a concatenation of
character strings and STRING functions. The length of the character
string expression must not exceed the length of the string variable
(determined in the declaration of the variable).

In the assignment of a unit variable, the expression must be of
tvpe INTEGER or REAL. The unit identifier may be either a previously

defined unit variable or the word INCH or INCHES.

134

For an axis variable assignment, all five record components may
be defined as shown in the fifth set 4instruction format. Each
component’s characteristics are the same as those discussed in the
previous section under the axis instruction, except- that now
expressions ma§.be inserted. These characteristics are expanded here
to inczlude string variables and constants or concatenation of
character strings and STRING functions for the title; integer or real
expressions where the axis is not of type MOKNTH; and integer
expressions for the delta and ticks components. These expansions may
also be used in the components defined for the axis instruction too.
They were deffered until the discussion on expressions.

- Any one of the axis variable’s components may also be defined or

redefined individually without having to declare all of the parts at

once. These formats are:

SET AXIS axis variable.TITLE=title
SET AXIS axis variable.TYPE=type
SET AXIS axis variable.MIN=min

SET AXIS axis variable.MAX=max

SET AXIS axis variable.DELTA=delta

SET AXIS axis variable.TICKS=ticks

These set instructions provide an excellent way of defining each
part at different locations in the program. The only restriction is
that once the TYPE of an axis variable has been defined, it cannot be

redefined to be another axis type unless all parts are defined at

135

asialeiiie,

once. This is required by the conversion necessary for MIN and MAX
values, since their values depend upon the type of axis defined.
Also, if MIN and/or MAX are defined tc be a month (i.e. JAN,feb,...)
prior to defining the type of axis, TYPE will automatically be set to
MONTH.

The second <cype of assignment instruction involves retrieving
data (data, constant values, and constants are used interchangably)
from a specified file or from the input deck. Appendix B of tnis
paper discusses how files are attached before the execution of the
program and how the data may be retrieved. This appendix will
describe only the formats of the input instruction and how the values
-retrieved are assigned to a variable. The type of data this syvstex
allows are: intager and real constants, boolean values (TRUE or
FALSE), and character strings.

For retrieving data from an attached file, the input instruction

format is:

INPUT identifier:TAPE number

where the number is an integer constant .Expressions may not be used
in the place of this number. The current version of the svsterx
allows only input from TAPEl and TAPEZ. When the dinstruction is
executed, values are retrieved left to right, iline by line, ignoring
anv comments found. The identifier may be of one of the basic tvpes
or a string variable. If the variable has been declared to be an
array, subscripts of the variable are not included. The svstem

retrieves the number of values from the tape that correspend to the

136

dimensions of the variable. For arrayvs declared to be of more than
one dimension, values are assigned as shown 1in table 6. As an
example, v_val stk is declared to be an ARRAY[2,2,10) OF REAL. Then

in the instruction:

INPUT y_val_stk:TAPE 1

the next 40 (2 times 2 times 10) data values are retrieved from
TAPE]l: the first value is assigned to y_val stk[l,1,1], the second to
v_val _stk([l,1,2], and continuing until the last value is assigned to

y_val_stk(2,2,10].

- TABLE 6
{ Array Variable Assignments
| VALUE READ | ASSTGNMENT
ist ' [l ’ 1) 1] I
2nd . [1 * 1 ’ 2] i
|
M ! s
| Nth i 1,1, N
; N+lth i n, 2,1
| 2Nth ; (1, 2, K]
| 2N+1th 1 1, 3, 1
MNth ! (1, ™, N]
MN+lth F 2,1,1) |
« . |
: : |
| LMNth | (L, M, N] i
!

The format for retrieving data from the input deck is:

INPUT identifier:TERMINAL

The word TERMINAL is used as the source locator, instead of for

137

example DECK, because the language was originally designed to run
interactivelvy with the user. This simply means that the user could
choose the values for variables during runtime of the program by
typing them in from a terminal as the input instructions are
executed. The identifier is handled in the same manner as the tape
input instruction. In both of these two 1instructions, as data is
retrieved, the datum types are individually compared with the
variable identifier type before assigning the value. At any time, if
the types differ, an error message is printed and execution of the
instruction is stopped.

Data may also be assigned directly to a variable identifier by

-the format:

INPUT identifier: DATA / data list /

where the data 1list is a list of integer or real constants, a
list of boolean values (TRUE or FALSE), or a character string. As
was noted in the previous section in the description of the GRAPH
instruction, it is possible to reduce a list of constants that are

the same to the form:

value : number

to prevent having to type a long list of consecutive values. The
number must be an integer constant and represents the number of times
the constant is to be repeated.

For instance, 1f FLAGS 1s declared to be an ARRAY[100] OF

138

.

. -
e o ks e e

BOOLEAN and the user wants to initialize the first 50 to TRUE and the

next S0 to FALSE, the input instruction could be:

INPUT flags:DATA / TRUE:50,false:50 /

Although the language allows assigning a character string to a
string identifier with this instruction, it should be rarely used if

at all, since
SET STRING string identifier = character string

is equivalent to the instructiom

INPUT string identifier:DATA / character string /

and since the data list 1in the input imstruction does not allow
character string concatenation or the use of the STRING function. In
the same light, assigning a basic type variable not defined as an
array is simpler and easier to understand with the SET instruction

since the data list does not allow expressions either.

Besides the normal type of output that this language provides to
a graphics terminal, a specific instruction is available tc output
data to a specified tape or to the output file. The formats of thne

output instruction are similar to those of the input instruction:

OUTPUT identifier:TAPE number

OUTPUT identifier:TERMINAL

139

The svstem has two output tapes that data may be written to: 3
and &. The identifier may be an array variable, basic variable,
string variable, an axis variable, or any of the constant identifier
tvpes. CQCutputting string identifiers or ~variables to the output
file (TERMINAL), used with the trace function of the system, provides
a method of debugging any program. When the identifier is an array
variable, the values are written in the same sequence as they are

read in the input instruction, shown in table 6.

Page Format Instructions:

At this pcint, before describing the page format instruction, 1t
-.would be useful to define a term that will be used frequently from
this point on. A UNIT VALUE is an integer or real representation of
a specified distance. The distance value may be of any integer or
real type expression. This expression is followed by a variable of
type UNIT or the unit word INCH or INCHES. Therefore, a wunit set

instruction can be represented in the form:

SET UNIT unit variable = unit value

as well as defining the segment parameter list as of the form:

SEGMINT segment identifier(unit value, unit value,

unit value, unit value)

the syntax diagrams in appendix A show all locations where unit

values are used.

140

o

|
|
|

i

There are three page format instructions available to the user
for redefining the size, the grace margin, and the binding margin of
pages. The ~values in the previous section of this appendix
describing these formats are default values of the system. Since
these instructions affect the output plots, they can only be called
in tne main program or in a section subtask, not within a page or
page segment.

To redefine the phyvsical border or size of a page, the format

is:

BORDER = unit value BY unit value

It is unimportant whether the length or height of the page is
specified first. If a page 1is defined to be VERTICAL, the longer
side is always the vertical dimension of the page and the shorter is
always the horizontal dimension. For a HORIZONTAL page, the format
is reversed: the longer side is the horizontal dimension. For pages
that are square (i.e. BORDER = 5 CENTIMETERS BY 5 CENTIMETERS),
HORIZONTAL and VERTICAL pages are the same.

The grace margin of a page 1is redefined by the grace margin

instruction:

GRACE = unit wvalue

This instruction also dimplicitly affects the 1location page

numbers are printed. If the page number location is TOP, the number

141

will be half the distance of the grace margin from the top edge of
the page border; for BOTTOM, the number is printed half the distance
from the bottom edge. If the grace margin is set to 0 inches, or if
the margin is defined to be less than the character height (see
SECTION III of this appendix), the page number will not be printed.

The third page format instruction redefines the binding margin
cf a page.

YAt
£l

NUING = unit value

If the binding margin 1is set equal to the grace margin, the user

should note that the page margin parameter in the page construct list
becomes ambiguous since LEFT RESET, RIGHT RESET, and CENTER produce

the same page margins: centered within the page.

An important point should be made about wusing these format
instructions. Like constants and variables declared in a specific
task, the page format instructions are active only in the subtasks
that they are called. For example, if a binding margin instruction
is called within the main program (before a section or page subtask),
then the binding format is global to the complete program and
affects every page subtask. However, 1f called within a section, the
format remains local to that subtask. If a page format instruction
is used in both the main program and within a section, the format
value defined within the main program becomes inactive during the
execution of the section, but is reactivated at the end of the

section.

142

Page Margin Defaults:

In the previous section of this appendix, it was shown that the
binding margin is defined with the words LEFT RESET, RIGHT RESET, or
CENTER as the second parameter of the page construct list. In most
cases, however, when text and graphs are bound, pages are printed
both op the front and back. To prevent having to insert the LEFT and
RIGHT RESETs in every page parameter, a default allows consecutive
pages to be printed with opposing binding margins. The default is
activated when a blank space is found as the parameter.

Initially, wupon entering the first page of the program or a
section subtask, the default is equivalent to LEFT RESET, where the
'binding margin is placed on the left side of the page. In the second
page subtask, the default is a right binding margin. At any time,
the default is reset when LEFT RESET or RIGHT RESET is inserted as
the parameter. When CENTERed page margins are used within a sequence
of binding pages, the default is affected as if a blank was inserted.

(That is, 1f a left binding margin page 1is followed by a CENTERed

page, the default for the next page will be a left binding margin).

Graph Instructions:

In the previous section, the format of the graph instruction,
along with the preparation instructions, was described for drawing
simple linear, bar, and pie graphs. ASGOL provides several
variations of these interpolations. Two smoothing techniques

provided by DISSPLA are available through ASGOL. SPLINE is a cubic

143

spline interpolation that fits third order polynomials between each

plotting point on the graph. This type of interpolation produces the
smoothest fit for non-irregular data; honwever, in fitting the curve
through each point, it also tends to produce oscillations. Also, the
total number of points per curve that may be interpolated 1s limited
to 102 (100 plus the end points). SMOOTH, similar to SPLINE, 1is a
spline smoothing technique that 1s used for data that is somewhat
scattered and when the SPLINE method does not produce a sufficient
smoothing effect. SMOOTH produces the smoothest possible curve that
passes, on the average, within a specific distance of the data
points. These two techniques are described fully inm the DISSPLA
-manual (ref 5).

ASGOL also has several variations of the basic BAR
interpolation. STEP i-terpolation is a degenerate cousin of the bar.
In STEP graphs, horizontal lines are drawn through each plotting
point of each curve, ending halfway between the X coordinates of the
plot. Vertical lines are then drawn connecting these end points and
producing a "stepping" effect. Graphs are not shaded with the STEP
interpolation. STACK BAR provides a method of showing 'sums of
values" at each X coordinate of the graph by stacking successive bar
plots, instead of placing them side by side as is the methcd 7 the
basic BAR interpolation.

In addition to the direct input of Y coordinate values c: ussed
in the previous section, ASGOL also allows values to be passed with
the use of an array integer or real variable. The format for the
graph instruction is not different; the direct input paraweter is

simply replaced by the variable name:

144

GRAPH title (graph type, number of plots, variable)

Using the variable method is a much "cleaner" way of plotting
points on a graph, since the instruction is not cluttered with a long
list of values.

For plotting a single curve or a& single bar plot on a graph
(number of plots=l), the variable can be declared to have 1, 2, or 3
dimension subscripts. For a single dimensional array, the subscripts
must be greater than or é;ual to the number of points to be plotted
(defined by the delta of the X axis). For 2 and 3-dimensional arravs,
if the number of points specified by the X axis is N, the Y values

-used for plotting are the array components [1,1] through [1,N] and
{1,1,1} through [1,1,N] respectively.

For plotting multiple curves or bar plots on a graph, if the
number of plots = M (M>1), then the variable must be declared to be a
2- or 3-dimensional array, where the minimum dimensions in the
declaration are [M,N] and [1,M,N] respectively. Table 2 can now be
revised to 1illustrate how the Y values of each plotting point are

obtained from a 3~dimensional array, shown in table 7. For 2-

dimensional arrays, the first subscript (1) is removed.

145

TABLE 7

X COORDINATE OF ARRAY COMPONENTS

| COMPONENT X coordinate i
'r il
; [1,1,1) minimum,lst plot :
{ {1,1,2] lst delta,lst plot ‘
| [1,1,N] maximum, lst plot ;
‘ {1,2,1] ninimum, 2nd plot
f [1,2,N] maximum, 2nd plot :
f [1,3,1} minimum, 3rd plot ;
[1,M,N] maximum,Mth plot |

In this table, it can be seen that 1if the wvariable’s second
dimension was declared to be J, where J>M, and the third dimension
was declared to be K, where K>N, then the values contained in the
variable’s subscripts [l1,M+l,1] through [1,M+1,X), . . . , [1,J,1]
through [1,J,K] become inaccessible for plotting.

One of the most powerful tools that ASGOL, version 1, provides
is the stack selection for graphs. With this feature, it is possible
to draw a series of linear or bar graphs, stacked vertically within
the subplot area. The only restrictions that apply to this option is
that no more than 6 graphs may be stacked, all graphs must be of the
same interpolation type, and each graph must contain the same number
or curves or bar plots. The stack option 1is useful when too manv
plots on a single graph tend to I'clutter" together, making it
difficult to distinguish individual curves. Each consecutive graph

is drawn directly above the previous graph, and for each graph, the Y

146

b

e =

axls is redrawn. The X axis is drawn only once, along the lower
horizontal edge of the bottom graph.

When the legend and grid instructions are used as preparation
instructions for stacked graphs, the instructions are called once for
each graph to be drawn (i.e. For a stack of 5 graphs, there would be
5 legend instructions). The first legend or grid instruction 1is used
by the bottom graph, the second by the graph above the bottom graph,
etc. If more legend or grid instructions than the number of graphs
are called, the remaining instructions will be ignored. If less
instructions are called, the remaining graphs will be drawn without a
legend or grid.

- The format for the stack graph is:

GRAPH title (STACK OF number graph type,

number of plots, variable)

where number 1is an integer constant between 1 and 6. If the
optional title is used, the character string will be printed once at
the top of the subplot area.

Although it is possible to input the Y values directly for
stacked graphs, it 1s not recommended, since the X coordinate
locations for the plotting points become much more difficult to
determine. However, with an array variable, the extensions of the
stack option are simple and straight forward. 1f the number of
stacked graphs=L, then the variable must be a 3-dimensional array

where the minimum dimensions in the declaration is [L,m,n). M and N

147

——————————————————

aaminncitatbacis | it o n

& e

denote the number of plots and number of points per plot as mentioned
above. Where the aumber of plots per graph is one (single curve or 1
bar plot), the variable may be a 2 or 3-diwmensional array with
pinimum dimensions {L,n]) and [1,L,n] respectively. Table 8
illustrates the expansion of the 3-dimensional array in table 7 for
stacked graphs. In extending table 7, if the first dimension of the
variable is declared to be I, where I>L, and the second and third
dimensions are J and K, J>M, KON, as mentioned above, then the values
contained in the variable’s subscripts [L+1,1,1] through [L+1,J,k}, -

« « ,11,1,1] through [I1,j,k] become inaccessible for plotting.

TABLE 8
X COORDINATES FOR STACKED GRAPHS
COMPONENT X COORDINATE (
[1,1,1] minimum,lst plot,lst graph
{1,1,2] lst delta,lst plot,lst graph ! 1
. . {
; [1,M,n] maximum,Mth plot,ist graph
’ [2,1,1]} minimum, lst plot,2nd graph
i [2,1,2] lst delta,lst plot,lst graph 1
1 [2,M,n] maximum,Mth plot,2nd graph
| : s
I (L,1,1) minimum,lst plot,Lth graph
| [L,m,n) maximum,Mth plot,Lth graph
i

An important note should be made about the use of the stack

option. Since all graphs are form-fitted to the subtask’s subplot

area, the user should make sure that the vertical dimension of the

area 1is large enough that the graphs do not get 'crunched". the

148

system will not write outside of the subplot area or chop off graphs

to make the first few recognizable. These are left for the user’s

descretion.

A

Text Instruction:

In printing long character strings in text form on the screen,
it was stated in the previous section that it is poscible to continue
the string in consecutive page or segment subtasks when the subplo:
area is not large enough for the complete character string. This
variation of the text instruction does not involve any preparation
-instructions nor any changes to the actual format of tne instruc..l-n.

The format is written here for convenience.

TEXT (text type text style, string identifier,

start, length, height)

The changes in this instruction from the previous one is made in
the second parameter, where a string constant or variable replaces
the actual character string.

Each string constar: -nd variable, when declared, is assigned a
pointer value used speciically by the text instruction. When a
string constant is assipgr . a character string within the declaration
block, and when a string variable is assigned a character string with
the SET or INPUT imstruction, this pointer is initialized to point at

the first character. The pointer is then updated each time the text

149

instruction does an operation on the variable or constant. If the

text instruction encounters the end of the character string while the
characters are printed, the pcinter is reset to point again to the
head of the string, and stops execution. If, however, the text
instruction reaches the end of the subplot area before the complete
character string is printed (or the number of characters in the
length parameter is reached), the pointer is updated to point to the
character after the 1last character drawn on the screen. The POINT
function described earlier is used to access this pointer value for
determining the location the text instruction is to begin printing.

If the word NEXT is inserted as the start parameter for the text
-instruction, the instruction begins printing characters starting at
the character that the pointer specifies. NEXT can be used as the
parameter for the first text instruction call after the string
identifier has been assigned, in which case the instruction starts
with the first character of the string.

ASGOL does not provide a method of explicitly setting the
pointer of a string identifier to a specific location since the start
parameter may alsc be an integer expression; however, in rare cases,
the pointer mav be reset implicitly to point to the head of the

string with the SET instruction:

SET STRING string variable = string variable

where both string variables are :he name of the string

identifier. String constants cannot be reset due to the condition

150

that constants cannot be reassigned. If this instruction is used, it
is recommended that the programmer provide comments in the program
describing why this instruction is included.

The text instruction also uses a default value for the character
height of the text to be printed if a blank space is encountered as
the parameter. The default height 1s 0.14 inches or the current
character height specified in the program (see Section III, String

Manipulation).

III. STRING MANIPULATION:

Since ASGOL was designed with maximum capability for DISSPLA
-string manipulation, it would be impossible to describe completely in
a few pages each of the facets DISSPLA provides. Therefore, the user
is referred to the DISSPLA manual version 8.2 in the subsequent
section for further description of string manipulation for this
language. It is advised that the user study specifically chapters 6,
22, and 24 of Part B of that manual to become familiar with the
character styles and fonts DISSPLA provides and how they are
manipulated. However, the user 1s relieved of having to understand
the FORTRAN call instructions since ASGOL provides this construction
in its language.

In the definition of a character string in the first section of
this appendix, it was stated that the symbols (,), +, -, *, and /

(defined as shift characters) are used by the system for character
font manipulation. Since DISSPLA allows up to six character sets to

be active at any time, the system uses the six most common fonts, as

151

ﬂ———m—__,!!___"

A

shown in table 9. When a character string is printed, if the first
character is not a shiftcharacter, the LOWER case ROMAN font 1is used
until a shift character is detected or until the end of string is
reached. When a shift character is detected, the font remains active

until another shift character is found.

TABLE 9
! SHIFT CHARACTER REPRESENTATION
i
CHARACTER) FONT

(. UPPER ROMAN

) | LOWER ROMAN

| + | UPPER SCRIPT

| - | LOWER SCRIPT

. ; * UP®ER ITALIC

! / ' LOWER ITALIC

DISSPLA, however, has eight other character sets availlable:
UPPER and LOWER case RUSSIAN, UPPER and LOWER case GREEK, HEBREW,
SPECIAL, MATH, and INSTRUCTION. Any of these character fonts can
become active simply by replacing the character font representation
for one of the six shift characters. Any or all of the implicit

fonts can be changed. The format of the change instruction is:

CHANGE implicit font TO explicit font

where the implicit font is ROMAN, SCRIPT, or ITALIC (preceeded

by the word UPPER or LOWER to specify the case) and the explicit font

is GREEK or ROMAN (preceeded by UPPER or LOWER), HEBREwW, SPECIAL,

152

~——p—
(DA e et A, ot

—— e

MATH, or INSTRUCTION. INSTRUCTION is a cpecial case in that it is

not a character font, but acts upon the succeeding characters similar
to the fonts. INSTRUCTION is discussed separately below.
For example, the LOWER case SCRIPT shift character - could be

changed to represent the MATH font by the instruction:

CHANGE LOWER SCRIPT TO MATH

After the execution of this instruction,each time the shift
character ~ is detected, the MATH font becomes active.
At any point of execution, no more than one shift character can

-be assigned to a character font. If, for example,

CHANGE UPPER ITALIC TO UPPER GREEK

was later followed by the instruction

CHANGE LOWER ROMAN TO UPPER GREEK

within the same subtask, an error would result because the
program has tried to assign both shift characters * and) to the
JPPER case GREEK font.

The INSTRUCTION option affects the position and properties of
the characters to be drawn following the shift character of the font
to be used. Prior to this shift character, the shift character

representing the INSTRUCTION option and the instructions that act

153

upor the text are inserted. Instructions consist of single character

commands followed by its arguments 1f any. At the end of the

character string that the instructions act upon, the instructions are
inserted again with “x° as its argument. This resets the
instructions previously activated. None of the instruction symbols
or shift characters are printed to the output. The DISSPLA manual
(ref 5) has the complete list of instruction commands.

The INSTRUCTION option provides a method of drawing characters,

affecting the character height, angle, style, and font within the

| character string instead of as a parameter to an instruction.
However, a precaution should be made when wusing this option.
-Commands that affect the properties of the character string (i.e.

Character height) will be invisible to someone reading the program if

&

the person is wunfamiliar with the instruction commands or if the

} string is read from an input tape or £file. Users should document
V their programs to include how these commands are used to produce the
%

outpute.

The height of character strings can be changed by the height

instruction and can occur in any task:
HEIGHT = unit value

By default, characters are printed with a height of 0.l4 inches.
Wnen the height instruction is executed, the height of all
characters printed on the screen 1s affected, except those printed
with the text instruction without the default option for character

height.

154

k Jurlibiugrd

Like the page format commands, both the change and height
instructions are local to the subtask that the instructions are
called. These instructions may occur in any subtask, and can occur
any number of times. The user should also realize that when the
change instruction is used, it affects all of the strings drawn on
the screen. One possible mistake that could be made is changing the
font representation for one of the shift characters between two page
subtasks that are using the text instruction to draw a continuing

character string to the screen.

155

et mnh A et —.

absolute
all
and
apr
area
array
arrow
aug
axis
bar
binding
boolean
border
bottonm
by
cartog
case
.center
centered
change
character
complx
constant
continue
cos
create
data
dec
declare
delta
do
down
draw
duplx
else
end

false
feb
float
for
fraction
frame
framed
gothic
grace
graph
greek
grid
hebrew
height
help
horizontal
if

inch
inches
iaput
inside
instruction
integer
inv
italic
jan

jul

Jjun
justified
left
legend
length
line
linear
list

TAB

Reserved

LE 10

Words and

Special Symbols

log scmplx
logarithmic script
lower section
l-r segment
mar sep
margin set
math simple
max simplx
may sin
min smooth
mod special
month spline
next stack
not stacked
nov step
oct string
of tan
or tape
origin terminal
others text
output then
outside ticks
page title
pie to
point top
program triplx
real true
reference type
rem unit
repeat until
reset upper
right variable
roman vertical
run while
russian X
scan xor
¥

* /

()

. It

<= >

156

James D. Hart was born on 4 September 1955 in Salina, Kansas.

He graduated from Sebring High School, Sebring, Florida, in June
1973 and attended South Florida Junior College for two years. After
receiving an Associate of Arts degree, he attended the Florida
Technological University (nmow the University of Central Florida) in
Orlando, Florida for his Bachelor of Science in Engineering degree
Engineering Mathematiss and Computer Systems (EMCS). Upon
graduation in August 1979, he receilved a commission in the United
States Air Force through the ROTC program where he entered the
School of Engineering, Alr Force Institute of Technology, for

graduate studies in Computer Science.

Permanent Address: Rt. 1 Box 143DF
Crestview, FL. 32536

157

SECUR TY CLASSIFICATION OF THIS PAGE rHhen Du.’ajim«-red‘

‘ READ INSTRUCT « .
REPORT DOCUMENTATION PAGE | BEFORE COMPI.ETIN? FORM

1. REPORT NUMBER |2v GOVT ACCESSION WO 3 RECIPIENT'S CATA_ L3 N MBEF
AFIT/GCS/MA/81M-2 Al Hreer Sid

4. TITLE (and Sublitle) L TYPE OF REPORT & PER, . TOVERED
ASGOL- AN ALGOL-STRUCTURED GRAPHICS M.S.THESIS

ORIENTED LANGUAGE € PERFORMING OG REFCRY NUMBER
7. AUTHORY's) 8. CONTRACT OR GRANT NUMBER's)

James David Hart, 2nd Lt., USAF

S RESS 10. PROGRAM ELEMENT PROJECT TASHK
9. PERFORMING ORGANIZATION NAME AND ADDRES R A N N UMEE RS

Air Force Institute of Technology
Wright-Patterson Air Force Base, Ohio 45433

1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

March, 19€1

Air Force Flight Dynamics Laboratory T WOWBER OF FActs

Wright-Pattersion Air Force Base, Ohio 45433

T4 MONITORING AGENCY NAME & ADDRESS(I{ differen: {rom Controiling Otlice) 1S. SECURITY CLASS. (of this report!

15a. DECLASSIFICATION DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

17. DISTRIBUTION STATEMENT (of the abstract entered 1n Block 20, if different from Report)

18. SUPPLEMENTARY NOTES . C ‘,\
FlERULD A R ALY /A.&,.c . a
AFTFGULUL o o e Ve e Litol

S FRUDRIC C LYNCH, PRjo

i e Dircct.r of Public Affairs X'ESFIMAY 1981

19. KEY WORDS /Continue or reverse srde i/ necessary and identtfy by block number)

Graphics Language

LR(1) Parsing Svstem
Block Structured Language
DISSPLA Software Package

20. ABSTRACT (Continue on reverse side If re essarv and rdentify by blouk number:

An ALGOL-like graphics oriented language and system was designed to provide

a block-structured format to graphics programs. The system was developed with
an LR(1) parsing procedure technique, and graphs are constructed using the
DISSPLA software package as the "host' to generate device-indepemdent plot
files. The language prcduces linear, bar and pie graphs, as well as having a
text processor to draw & verjety of character styles and fonts for documen-
tation.

DD 555", 1473 EoiTion 0F 'Oy ¢t is OBSOLETE

SECURITY CLASSIFICATION OF TH!S PAGE ‘When Data Foterec

SECURITY CLASSIFICATION OF THIS PAGE/When Date Entered)

SEZURITY CLASSIFICATION OF Yv'" PASE When Dete Enterec .

